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C H A P T E R

1 Fundamentals

The cornerstones of mathematics are definition, theorem, and proof. Definitions specify pre-
cisely the concepts in which we are interested, theorems assert exactly what is true about these
concepts, and proofs irrefutably demonstrate the truth of these assertions.

Before we get started, though, we ask a question: Why?

1 Joy

Why?

Before we roll up our sleeves and get to work in earnest, I want to share with you a fewPlease also read the To the Student

preface, where we briefly address the

questions: What is mathematics, and

what is discrete mathematics? We

also give important advice on how to

read a mathematics book.

thoughts on the question: Why study mathematics?
Mathematics is incredibly useful. Mathematics is central to every facet of modern tech-

nology: the discovery of new drugs, the scheduling of airlines, the reliability of communi-
cation, the encoding of music and movies on CDs and DVDs, the efficiency of automobile
engines, and on and on. Its reach extends far beyond the technical sciences. Mathematics is
also central to all the social sciences, from understanding the fluctuations of the economy
to the modeling of social networks in schools or businesses. Every branch of the fine arts—
including literature, music, sculpture, painting, and theater—has also benefited from (or been
inspired by) mathematics

Because mathematics is both flexible (new mathematics is invented daily) and rigorous
(we can incontrovertibly prove our assertions are correct), it is the finest analytic tool humans
have developed.

The unparalleled success of mathematics as a tool for solving problems in science, engi-
neering, society, and the arts is reason enough to actively engage this wonderful subject. We
mathematicians are immensely proud of the accomplishments that are fueled by mathematical
analysis. However, for many of us, this is not the primary motivation to study mathematics.

The Agony and the Ecstasy

Why do mathematicians devote their lives to the study of mathematics? For most of us, it is
because of the joy we experience when doing mathematics.

Mathematics is difficult for everyone. No matter what level of accomplishment or skill
in this subject you (or your instructor) have attained, there is always a harder, more frustrat-
ing problem waiting around the bend. Demoralizing? Hardly! The greater the challenge, the
greater the sense of accomplishment we experience when the challenge has been met. The
best part of mathematics is the joy we experience in practicing this art.

Most art forms can be enjoyed by spectators. I can delight in a concert performed by
talented musicians, be awestruck by a beautiful painting, or be deeply moved by literature.
Mathematics, however, releases its emotional surge only for those who actually do the work.

1



Scheinerman-5059 49421 February 02, 2012 14:32 2

2 Chapter 1 Fundamentals

I want you to feel the joy, too. So at the end of this short section there is a single problem
for you to tackle. In order for you to experience the joy, do not under any circumstancesConversely, if you have solved this

problem, do not offer your assistance

to others; you don’t want to spoil

their fun.

let anyone help you solve this problem. I hope that when you first look at the problem, you
do not immediately see the solution but, rather, have to struggle with it for a while. Don’t
feel bad: I’ve shown this problem to extremely talented mathematicians who did not see the
solution right away. Keep working and thinking—the solution will come. My hope is that
when you solve this puzzle, it will bring a smile to your face. Here’s the puzzle:

1 Exercise 1.1. Simplify the following algebraic expression:

.x ! a/.x ! b/.x ! c/ " " " .x ! z/:

2 Speaking (and Writing) of Mathematics

Precisely!

Whether or not we enjoy mathematics, we all can admire one of its unique features: there
are definitive answers. Few other endeavors from economics to literary analysis to history to
psychology can make this boast. Furthermore, in mathematics we can speak (and write) with
extreme precision. While endless books, songs, and poems have been written about love, it’s
far easier to make precise statements (and verify their truth) about mathematics than human
relations.

Precise language is vital to the study of mathematics. Unfortunately, students sometimes
see mathematics as an endless series of numeric and algebraic calculations in which letters
are only used to name variables; the closest one comes to using actual words is “sin” or “log.”

In fact, to communicate mathematics clearly and precisely we need far more than num-
bers, variables, operations, and relation symbols; we need words composed into meaningful
sentences that exactly convey the meaning we intend. Mathematical sentences often include
technical notation, but the rules of grammar apply fully. Arguably, until one expresses ideas
in a coherent sentence, those ideas are only half baked.

In addition, the mental effort to convert mathematical ideas into language is vital to learn-
ing those concepts. Take the time to express your ideas clearly both verbally and in writing. To
learn mathematics requires you to engage all routes into your brain: your hands, eyes, mouth,
and ears all need to get in on the act. Say the ideas out loud and write them down. You will
learn to express yourself more clearly and you will learn the concepts better.

A Bit of Help

Writing is difficult. The best way to learn is to practice, especially with the help of a partner.Be sure to check with your instructor

concerning what types of

collaboration are permitted on your

assignments.

Most people find it difficult to edit their own writing; our brains know what we want to say
and trick us into believing that what we put onto paper is exactly what we intend. If you resort
to saying “well, you know what I mean” then you need to try again.

In this brief section we provide a few pointers and some warnings about some common
mistakes.

! A language of our own. Scattered in the margins of this book you will find Mathspeak

notes that explain some of the idiosyncratic ways in which mathematicians use ordinary
words. Common words (such as function or prime) are used differently in mathematics
than in general use. The good news is that when we co-opt words into mathematical
service, the meanings we give them are razor sharp (see the next section of this book for
more about this).

! Complete sentences. This is the most basic rule of grammar and it applies to mathematics
as much as to any discipline. Mathematical notation must be part of a sentence.

Bad: 3x C 5.
This is not a sentence! What about 3x C 5? What is the writer trying to say?
Good: When we substitute x D !5=3 into 3x C 5 the result is 0.
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! Mismatch of categories. This is one of the most common mistakes people commit in
mathematical writing and speaking. A line segment isn’t a number, a function isn’t an
equation, a set isn’t an operation, and so on. Consider this sentence:

Air Force One is the president of the United States.
This, of course, is nonsense. No amount of “well, you know what I mean” or “you get the
general idea” can undo the error of writing that an airplane is a human being. Yet, this is
exactly the sort of error novice mathematical writers (and speakers) make frequently.

Thus, don’t write “the function is equal to 3” when you mean “when the function is
evaluated at x D 5 the result is 3”. Note that we don’t have to be verbose. Don’t write
“f D 3”, but do write “f .5/ D 3.”

Bad: If the legs of a right triangle T have lengths 5 and 12, then T D 30.
Good: If the legs of a right triangle T have lengths 5 and 12, then the area of T

is 30.
! Avoid pronouns. It’s easy to write a sentence full of pronouns that you—the writer—

understand but which is incomprehensible to anyone else.
Bad: If we move everything over, then it simplifies and that’s our answer.
Give the things you’re writing about names (such as single letters for numbers and

line numbers for equations).
Good: When we move all terms involving x to the left in equation (12), we find that

those terms cancel and that enables us to determine the value of y.
! Rewrite. It’s nearly impossible to write well on a first draft. What’s more, few mathe-

matics problems can be solved correctly straight away. Unfortunately, some students (not
you, of course) start solving a problem, cross out errors, draw arrows to new parts of the
solution, and then submit this awful mess as a finished product. Yuck! As with all other
forms of writing, compose a first draft, edit, and then rewrite.

! Learn LATEX. The editing and rewriting process is made much easier by word proces-
sors. Unfortunately, it’s much more difficult to type mathematics than ordinary prose.
Some what-you-see-is-what-you-get [WYSIWYG] word processing programs, such as
Microsoft Word, include an equation editor that allows the typist to insert mathematical
formulas into documents. Indeed, many scientists and engineers use Word to compose
technical papers replete with intricate formulas.

Nevertheless, the gold standard for mathematical typing is LATEX. Learning to com-The word LATEX is written with

letters of various sizes on different

levels, in part to distinguish it from

latex, a type of rubber.

Incidentally, this book was composed

using LATEX.

pose documents in LATEX takes a significant initial investment of time, but no investment
of cash as there many implementations of LATEX that are free and run on most types of
computers (Windows, Mac OS, linux). Documents produced in LATEX are visually more
appealing than the output of WYSIWIG systems and are easier to edit. In LATEX one
types special commands to produce mathematical notation. For example, to produce the
quadratic formula

x D
!b ˙

p

b2
! 4ac

2a

one types: x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}

There are many guides and books available for learning LATEX including some that
are available for free on the web.

2 Exercise 2.1. The six pieces below can be arranged to form a 3 " 3 square with the middle 1 " 1

square left empty (as in the figure in the margin).
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Determine how to solve this puzzle and then write out clear instructions (without any
diagrams!) so that another person can read your directions and properly fit the pieces
together to arrive at the solution.

You may download a large, printable version of the puzzle pieces (so you can cut
them out) from the author’s website:

www.ams.jhu.edu/!ers/mdi/puzzle.pdf

3 Definition

Mathematics exists only in people’s minds. There is no such “thing” as the number 6. You can
draw the symbol for the number 6 on a piece of paper, but you can’t physically hold a 6 in
your hands. Numbers, like all other mathematical objects, are purely conceptual.

Mathematical objects come into existence by definitions. For example, a number is called
prime or even provided it satisfies precise, unambiguous conditions. These highly specific
conditions are the definition for the concept. In this way, we are acting like legislators, laying
down specific criteria such as eligibility for a government program. The difference is that laws
may allow for some ambiguity, whereas a mathematical definition must be absolutely clear.

Let’s take a look at an example.

In a definition, the word(s) being

defined are typically set in italic type.

Definition 3.1 (Even) An integer is called even provided it is divisible by two.

Clear? Not entirely. The problem is that this definition contains terms that we have not yet
defined, in particular integer and divisible. If we wish to be terribly fussy, we can complain
that we haven’t defined the term two. Each of these terms—integer, divisible, and two—can
be defined in terms of simpler concepts, but this is a game we cannot entirely win. If every
term is defined in terms of simpler terms, we will be chasing definitions forever. Eventually
we must come to a point where we say, “This term is undefined, but we think we understand
what it means.”

The situation is like building a house. Each part of the house is built up from previous
parts. Before roofing and siding, we must build the frame. Before the frame goes up, there
must be a foundation. As house builders, we think of pouring the foundation as the first step,
but this is not really the first step. We also have to own the land and run electricity and water
to the property. For there to be water, there must be wells and pipes laid in the ground. STOP!
We have descended to a level in the process that really has little to do with building a house.
Yes, utilities are vital to home construction, but it is not our job, as home builders, to worry
about what sorts of transformers are used at the electric substation!

Let us return to mathematics and Definition 3.1. It is possible for us to define the terms
integer, two, and divisible in terms of more basic concepts. It takes a great deal of work to
define integers, multiplication, and so forth in terms of simpler concepts. What are we to do?
Ideally, we should begin from the most basic mathematical object of all—the set—and work
our way up to the integers. Although this is a worthwhile activity, in this book we build our
mathematical house assuming the foundation has already been laid.

Where shall we begin? What may we assume? In this book, we take the integers as ourThe symbol Z stands for the integers.

This symbol is easy to draw, but

often people do a poor job. Why?

They fall into the following trap:

They first draw a Z and then try to

add an extra slash. That doesn’t

work! Instead, make a 7 and then

an interlocking, upside-down 7 to

draw Z.

starting point. The integers are the positive whole numbers, the negative whole numbers, and
zero. That is, the set of integers, denoted by the letter Z, is

Z D f: : : ;"3;"2;"1; 0; 1; 2; 3; : : :g :

We also assume that we know how to add, subtract, and multiply, and we need not prove
basic number facts such as 3 # 2 D 6. We assume the basic algebraic properties of addition,
subtraction, and multiplication and basic facts about order relations (<, $, >, and %). See
Appendix D for more details on what you may assume.

Thus, in Definition 3.1, we need not define integer or two. However, we still need to
define what we mean by divisible. To underscore the fact that we have not made this clear yet,
consider the question: Is 3 divisible by 2?We want to say that the answer to this question is no,
but perhaps the answer is yes since 3& 2 is 1

1

2
. So it is possible to divide 3 by 2 if we allow
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fractions. Note further that in the previous paragraph we were granted basic properties of
addition, subtraction, and multiplication, but not—and conspicuous by its absence—division.
Thus we need a careful definition of divisible.

Definition 3.2 (Divisible) Let a and b be integers. We say that a is divisible by b provided there is an
integer c such that bc D a. We also say b divides a, or b is a factor of a, or b is a divisor of
a. The notation for this is bja.

This definition introduces various terms (divisible, factor, divisor, and divides) as well as
the notation bja. Let’s look at an example.

Example 3.3 Is 12 divisible by 4? To answer this question, we examine the definition. It says that a D 12

is divisible by b D 4 if we can find an integer c so that 4c D 12. Of course, there is such an
integer, namely, c D 3.

In this situation, we also say that 4 divides 12 or, equivalently, that 4 is a factor of 12. We
also say 4 is a divisor of 12.

The notation to express this fact is 4j12.
On the other hand, 12 is not divisible by 5 because there is no integer x for which 5x D

12; thus 5j12 is false.

Now Definition 3.1 is ready to use. The number 12 is even because 2j12, and we know
2j12 because 2 ! 6 D 12. On the other hand, 13 is not even, because 13 is not divisible by 2;
there is no integer x for which 2x D 13. Note that we did not say that 13 is odd because we
have yet to define the term odd. Of course, we know that 13 is an odd number, but we simply
have not “created” odd numbers yet by specifying a definition for them. All we can say at this
point is that 13 is not even. That being the case, let us define the term odd.

Definition 3.4 (Odd) An integer a is called odd provided there is an integer x such that a D 2x C 1.

Thus 13 is odd because we can choose x D 6 in the definition to give 13 D 2 ! 6C 1.
Note that the definition gives a clear, unambiguous criterion for whether or not an integer is
odd.

Please note carefully what the definition of odd does not say: It does not say that an
integer is odd provided it is not even. This, of course, is true, and we prove it in a subsequent
chapter. “Every integer is odd or even but not both” is a fact that we prove.

Here is a definition for another familiar concept.

Definition 3.5 (Prime) An integer p is called prime provided that p > 1 and the only positive divisors of
p are 1 and p.

For example, 11 is prime because it satisfies both conditions in the definition: First, 11 is
greater than 1, and second, the only positive divisors of 11 are 1 and 11.

However, 12 is not prime because it has a positive divisor other than 1 and itself; for
example, 3j12, 3 6D 1, and 3 6D 12.

Is 1 a prime? No. To see why, take p D 1 and see if p satisfies the definition of primality.
There are two conditions: First we must have p > 1, and second, the only positive divisors
of p are 1 and p. The second condition is satisfied: the only divisors of 1 are 1 and itself.
However, p D 1 does not satisfy the first condition because 1 > 1 is false. Therefore, 1 is not
a prime.

We have answered the question: Is 1 a prime? The reason why 1 isn’t prime is that the
definition was specifically designed to make 1 nonprime! However, the real “why question”
we would like to answer is: Why did we write Definition 3.5 to exclude 1?

I will attempt to answer this question in a moment, but there is an important philosophical
point that needs to be underscored. The decision to exclude the number 1 in the definition
was deliberate and conscious. In effect, the reason 1 is not prime is “because I said so!” In
principle, you could define the word prime differently and allow the number 1 to be prime.
The main problem with your using a different definition for prime is that the concept of a
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prime number is well established in the mathematical community. If it were useful to you to
allow 1 as a prime in your work, you ought to choose a different term for your concept, such
as relaxed prime or alternative prime.

Now, let us address the question: Why did we write Definition 3.5 to exclude 1? The idea
is that the prime numbers should form the “building blocks” of multiplication. Later, we prove
the fact that every positive integer can be factored in a unique fashion into prime numbers.
For example, 12 can be factored as 12 D 2!2!3. There is no other way to factor 12 down to
primes (other than rearranging the order of the factors). The prime factors of 12 are precisely
2, 2, and 3. Were we to allow 1 as a prime number, then we could also factor 12 down to
“primes” as 12 D 1 ! 2 ! 2 ! 3, a different factorization.

Since we have defined prime numbers, it is appropriate to define composite numbers.

Definition 3.6 (Composite) A positive integer a is called composite provided there is an integer b such that
1 < b < a and bja.

For example, the number 25 is composite because it satisfies the condition of the def-
inition: There is a number b with 1 < b < 25 and bj25; indeed, b D 5 is the only such
number.

Similarly, the number 360 is composite. In this case, there are several numbers b that
satisfy 1 < b < 360 and bj360.

Prime numbers are not composite. If p is prime, then, by definition, there can be no
divisor of p between 1 and p (read Definition 3.5 carefully).

Furthermore, the number 1 is not composite. (Clearly, there is no number b with 1 < b <

1.) Poor number 1! It is neither prime nor composite! (There is, however, a special term that
is applied to the number 1—the number 1 is called a unit.)

Recap

In this section, we introduced the concept of a mathematical definition. Definitions typically
have the form “An object X is called the term being defined provided it satisfies specific

conditions.” We presented the integers Z and defined the terms divisible, odd, even, prime,
and composite.

3 Exercises 3.1. Please determine which of the following are true and which are false; use Definition 3.2
to explain your answers.
a. 3j100.
b. 3j99.
c. "3j3.
d. "5j" 5.
e. "2j" 7.
f. 0j4.
g. 4j0.
h. 0j0.

3.2. Here is a possible alternative to Definition 3.2: We say that a is divisible by b provided
a

b
is an integer. Explain why this alternative definition is different from Definition 3.2.
Here, different means that Definition 3.2 and the alternative definition specify dif-

ferent concepts. So, to answer this question, you should find integers a and b such that
a is divisible by b according to one definition, but a is not divisible by b according to
the other definition.

3.3. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.
Which of these numbers is composite?
a. 21.
b. 0.
c. ! .
d. 1

2
.

e. "2.
f. "1.
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3.4. The natural numbers are the nonnegative integers; that is,The symbol N stands for the natural

numbers.
N D f0; 1; 2; 3; : : :g:

Use the concept of natural numbers to create definitions for the following relations
about integers: less than (<), less than or equal to (!), greater than (>), and greater

than or equal to (").
Note: Many authors define the natural numbers to be just the positive integers; for

them, zero is not a natural number. To me, this seems unnatural . The concepts positive
integers and nonnegative integers are unambiguous and universally recognized among
mathematicians. The term natural number, however, is not 100% standardized.

3.5. A rational number is a number formed by dividing two integers a=b where b 6D 0. TheThe symbol Q stands for the rational

numbers. set of all rational numbers is denotedQ.
Explain why every integer is a rational number, but not all rational numbers are

integers.
3.6. Define what it means for an integer to be a perfect square. For example, the integers 0,

1, 4, 9, and 16 are perfect squares. Your definition should begin
An integer x is called a perfect square provided. . . .

3.7. Define what it means for one number to be the square root of another number.
3.8. Define the perimeter of a polygon.
3.9. Suppose the concept of distance between points in the plane is already defined. Write a

careful definition for one point to be between two other points. Your definition should
begin

Suppose A; B; C are points in the plane. We say that C is between A and B

provided. . . .
Note: Since you are crafting this definition, you have a bit of flexibility. Consider

the possibility that the point C might be the same as the point A or B , or even that A

and B might be the same point. Personally, if A and C were the same point, I would
say that C is between A and B (regardless of where B may lie), but you may choose
to design your definition to exclude this possibility. Whichever way you decide is fine,
but be sure your definition does what you intend.

Note further: You do not need the concept of collinearity to define between. Once
you have defined between, please use the notion of between to define what it means for
three points to be collinear. Your definition should begin

Suppose A; B; C are points in the plane. We say that they are collinear pro-
vided. . . .
Note even further: Now if, say, A and B are the same point, you certainly want

your definition to imply that A, B , and C are collinear.
3.10. Define the midpoint of a line segment.
3.11. Some English words are difficult to define with mathematical precision (for example,

love), but some can be tightly defined. Try writing definitions for these:

a. teenager.
b. grandmother.
c. leap year.
d. dime.
e. palindrome.
f. homophone.

You may assume more basic concepts (such as coin or pronunciation) are already de-
fined.

3.12. Discrete mathematicians especially enjoy counting problems: problems that ask how

many. Here we consider the question: Howmany positive divisors does a number have?
For example, 6 has four positive divisors: 1, 2, 3, and 6.

How many positive divisors does each of the following have?
a. 8.
b. 32.
c. 2n where n is a positive integer.
d. 10.
e. 100.
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f. 1,000,000.
g. 10n where n is a positive integer.
h. 30 D 2 ! 3 ! 5.
i. 42 D 2 ! 3 ! 7. (Why do 30 and 42 have the same number of positive divisors?)
j. 2310 D 2 ! 3 ! 5 ! 7 ! 11.
k. 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8.
l. 0.

3.13. An integer n is called perfect provided it equals the sum of all its divisors that are both
positive and less than n. For example, 28 is perfect because the positive divisors of 28
are 1, 2, 4, 7, 14, and 28. Note that 1C 2C 4C 7C 14 D 28.
a. There is a perfect number smaller than 28. Find it.
b. Write a computer program to find the next perfect number after 28.

3.14. At a Little League game there are three umpires. One is an engineer, one is a physicist,

and one is a mathematician. There is a close play at home plate, but all three umpires

agree the runner is out.

Furious, the father of the runner screams at the umpires, “Why did you call her

out?!”

The engineer replies, “She’s out because I call them as they are.”

The physicist replies, “She’s out because I call them as I see them.”

The mathematician replies, “She’s out because I called her out.”

Explain the mathematician’s point of view.

4 Theorem

A theorem is a declarative statement about mathematics for which there is a proof.
The notion of proof is the subject of the next section—indeed, it is a central theme of

this book. Suffice it to say for now that a proof is an essay that incontrovertibly shows that a
statement is true.

In this section we focus on the notion of a theorem. Reiterating, a theorem is a declarative
statement about mathematics for which there is a proof.

What is a declarative statement? In everyday English we utter many types of sentences.
Some sentences are questions: Where is the newspaper? Other sentences are commands:
Come to a complete stop. And perhaps the most common sort of sentence is a declarative

statement—a sentence that expresses an idea about how something is, such as: It’s going to
rain tomorrow or The Yankees won last night.

Practitioners of every discipline make declarative statements about their subject matter.
The economist says, “If the supply of a commodity decreases, then its price will increase.”
The physicist asserts, “When an object is dropped near the surface of the earth, it accelerates
at a rate of 9:8 meter=sec2.”

Mathematicians also make statements that we believe are true about mathematics. Such
statements fall into three categories:

! Statements we know to be true because we can prove them—we call these theorems.
! Statements whose truth we cannot ascertain—we call these conjectures.
! Statements that are false—we call these mistakes!

There is one more category of mathematical statements. Consider the sentence “ThePlease be sure to check your own

work for nonsensical sentences. This

type of mistake is all too common.

Think about every word and symbol

you write. Ask yourself, what does

this term mean? Do the expressions

on the left and right sides of your

equations represent objects of the

same type?

square root of a triangle is a circle.” Since the operation of extracting a square root applies to
numbers, not to geometric figures, the sentence doesn’t make sense. We therefore call such
statements nonsense!

The Nature of Truth

To say that a statement is true asserts that the statement is correct and can be trusted. However,
the nature of truth is much stricter in mathematics than in any other discipline. For example,
consider the following well-known meteorological fact: “In July, the weather in Baltimore is
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hot and humid.” Let me assure you, from personal experience, that this statement is true! Does
this mean that every day in every July is hot and humid? No, of course not. It is not reasonable
to expect such a rigid interpretation of a general statement about the weather.

Consider the physicist’s statement just presented: “When an object is dropped near the
surface of the earth, it accelerates at a rate of 9:8 meter=sec2.” This statement is also true and
is expressed with greater precision than our assertion about the climate in Baltimore. But this
physics “law” is not absolutely correct. First, the value 9.8 is an approximation. Second, the
term near is vague. From a galactic perspective, the moon is “near” the earth, but that is not
the meaning of near that we intend. We can clarify near to mean “within 100 meters of the
surface of the earth,” but this leaves us with a problem. Even at an altitude of 100 meters,
gravity is slightly less than at the surface. Worse yet, gravity at the surface is not constant; the
gravitational pull at the top of Mount Everest is a bit smaller than the pull at sea level!

Despite these various objections and qualifications, the claim that objects dropped near
the surface of the earth accelerate at a rate of 9:8 meter=sec2 is true. As climatologists or
physicists, we learn the limitations of our notion of truth. Most statements are limited in
scope, and we learn that their truth is not meant to be considered absolute and universal.

However, in mathematics the word true is meant to be considered absolute, unconditional,
and without exception.

Let us consider an example. Perhaps the most celebrated theorem in geometry is the
following classical result of Pythagoras.

Theorem 4.1 (Pythagorean) If a and b are the lengths of the legs of a right triangle and c is the length of
the hypotenuse, then

a
2
C b

2
D c

2
:a

b

c

The relation a2
C b2

D c2 holds for the legs and hypotenuse of every right triangle,
absolutely and without exception! We know this because we can prove this theorem (more on
proofs later).

Is the Pythagorean Theorem really absolutely true? We might wonder: If we draw a right
triangle on a piece of paper and measure the lengths of the sides down to a billionth of an inch,
would we have exactly a2

C b2
D c2? Probably not, because a drawing of a right triangle

is not a right triangle! A drawing is a helpful visual aid for understanding a mathematical
concept, but a drawing is just ink on paper. A “real” right triangle exists only in our minds.

On the other hand, consider the statement, “Prime numbers are odd.” Is this statement
true? No. The number 2 is prime but not odd. Therefore, the statement is false. We might like
to say it is nearly true since all prime numbers except 2 are odd. Indeed, there are far more
exceptions to the rule “July days in Baltimore are hot and humid” (a sentence regarded to be
true) than there are to “Prime numbers are odd.”

Mathematicians have adopted the convention that a statement is called true provided it is
absolutely true without exception. A statement that is not absolutely true in this strict way is
called false.

An engineer, a physicist, and a mathematician are taking a train ride through Scotland.

They happen to notice some black sheep on a hillside.

“Look,” shouts the engineer. “Sheep in this part of Scotland are black!”

“Really,” retorts the physicist. “You mustn’t jump to conclusions. All we can say is that

in this part of Scotland there are some black sheep.”

“Well, at least on one side,” mutters the mathematician.

If-Then

Mathematicians use the English language in a slightly different way than ordinary speakers.Consider the mathematical and the

ordinary usage of the word prime.

When an economist says that the

prime interest rate is now 8%, we are

not upset that 8 is not a prime

number!

We give certain words special meanings that are different from that of standard usage. Math-
ematicians take standard English words and use them as technical terms. We give words such
as set, group, and graph new meanings. We also invent our own words, such as bijection and
poset. (All these words are defined later in this book.)

Not only do mathematicians expropriate nouns and adjectives and give them new mean-
ings, we also subtly change the meaning of common words, such as or, for our own purposes.
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While we may be guilty of fracturing standard usage, we are highly consistent in how we do
it. I call such altered usage of standard English mathspeak, and the most important example
of mathspeak is the if-then construction.

The vast majority of theorems can be expressed in the form “If A, then B .” For example,In the statement “If A, then B,”

condition A is called the hypothesis

and condition B is called the

conclusion.

the theorem “The sum of two even integers is even” can be rephrased “If x and y are even
integers, then x C y is also even.”

In casual conversation, an if-then statement can have various interpretations. For example,
I might say to my daughter, “If you mow the lawn, then I will pay you $20.” If she does the
work, she will expect to be paid. She certainly wouldn’t object if I gave her $20 when she
didn’t mow the lawn, but she wouldn’t expect it. Only one consequence is promised.

On the other hand, if I say to my son, “If you don’t finish your lima beans, then you won’t
get dessert,” he understands that unless he finishes his vegetables, no sweets will follow. But
he also understands that if he does finish his lima beans, then he will get dessert. In this case
two consequences are promised: one in the event he finishes his lima beans and one in the
event he doesn’t.

The mathematical use of if-then is akin to that of “If you mow the lawn, then I will pay
you $20.” The statement “If A, then B” means: Every time condition A is true, condition B

must be true as well. Consider the sentence “If x and y are even, then xC y is even.” All this
sentence promises is that when x and y are both even, it must also be the case that x C y is
even. (The sentence does not rule out the possibility of x C y being even despite x or y not
being even. Indeed, if x and y are both odd, we know that x C y is also even.)

In the statement “If A, then B ,” we might have condition A true or false, and we might
have condition B true or false. Let us summarize this in a chart. If the statement “If A, then
B” is true, we have the following.

Condition A Condition B

True True Possible
True False Impossible
False True Possible
False False Possible

All that is promised is that whenever A is true, B must be true as well. If A is not true, then
no claim about B is asserted by “If A, then B .”

Here is an example. Imagine I am a politician running for office, and I announce in public,
“If I am elected, then I will lower taxes.” Under what circumstances would you call me a liar?

! Suppose I am elected and I lower taxes. Certainly you would not call me a liar—I kept
my promise.

! Suppose I am elected and I do not lower taxes. Now you have every right to call me a
liar—I have broken my promise.

! Suppose I am not elected, but somehow (say, through active lobbying) I manage to get
taxes lowered. You certainly would not call me a liar—I have not broken my promise.

! Finally, suppose I am not elected and taxes are not lowered. Again, you would not accuse
me of lying—I promised to lower taxes only if I were elected.

The only circumstance under which “If .A/ I am elected, then .B/ I will lower taxes” is a lie
is when A is true and B is false.

In summary, the statement “If A, then B” promises that condition B is true whenever A

is true but makes no claim about B when A is false.

If-then statements pervade all of mathematics. It would be tiresome to use the sameAlternative wordings for “If A,

then B.” phrases over and over in mathematical writing. Consequently, there is an assortment of alter-
native ways to express “If A, then B .” All of the following express exactly the same statement
as “If A, then B .”

! “A implies B .” This can also be expressed in passive voice: “B is implied by A.”
! “Whenever A, we have B .” Also: “B , whenever A.”
! “A is sufficient for B .” Also: “A is a sufficient condition for B .”

This is an example of mathspeak. The word sufficient can carry, in standard English, the
connotation of being “just enough.” No such connotation should be ascribed here. The
meaning is “Once A is true, then B must be true as well.”
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! “In order for B to hold, it is enough that we have A.”
! “B is necessary for A.”

This is another example of mathspeak. The way to understand this wording is as
follows: In order for A to be true, it is necessarily the case that B is also true.

! “A, only if B .”
The meaning is that A can happen only if B happens as well.

! “A H) B .”
The special arrow symbolH) is pronounced “implies.”

! “B (H A”.
The arrow(H is pronounced “is implied by.”

If and Only If

The vast majority of theorems are—or can readily be expressed—in the if-then form. Some
theorems go one step further; they are of the form “IfA thenB , and if B then A.” For example,
we know the following is true:

If an integer x is even, then x C 1 is odd, and if x C 1 is odd, then x is even.

This statement is verbose. There are concise ways to express statements of the form “A implies
B and B implies A” in which we do not have to write out the conditions A and B twice each.
The key phrase is if and only if. The statement “If A then B , and if B then A” can be rewritten
as “A if and only if B .” The example just given is more comfortably written as follows:

An integer x is even if and only if x C 1 is odd.

What does an if-and-only-if statement mean? Consider the statement “A if and only if B .”
Conditions A and B may each be either true or false, so there are four possibilities that we
can summarize in a chart. If the statement “A if and only if B” is true, we have the following
table.

Condition A Condition B

True True Possible
True False Impossible
False True Impossible
False False Possible

It is impossible for condition A to be true while B is false, because A H) B . Likewise, it
is impossible for condition B to be true while A is false, because B H) A. Thus the two
conditions A and B must be both true or both false.

Let’s revisit the example statement.

An integer x is even if and only if x C 1 is odd.

Condition A is “x is even” and condition B is “xC 1 is odd.” For some integers (e.g., x D 6),
conditions A and B are both true (6 is even and 7 is odd), but for other integers (e.g., x D 9),
both conditions A and B are false (9 is not even and 10 is not odd).

Just as there are many ways to express an if-then statement, so too are there several waysAlternative wordings for “A if and

only if B.” to express an if-and-only-if statement.

! “A iff B .”
Because the phrase “if and only if” occurs so frequently, the abbreviation “iff” is often
used.

! “A is necessary and sufficient for B .”
! “A is equivalent to B”.

The reason for the word equivalent is that condition A holds under exactly the same
circumstances under which condition B holds.

! “A is true exactly when B is true.”
The word exactly means that the circumstances under which condition A hold are pre-
cisely the same as the circumstances under which B holds.

! “A() B”.
The symbol() is an amalgamation of the symbols(H and H).
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And, Or, and Not

Mathematicians use the words and, or, and not in very precise ways. The mathematical usage
of and and not is essentially the same as that of standard English. The usage of or is more
idiosyncratic.

The statement “A and B” means that both statements A and B are true. For example,Mathematical use of and.

“Every integer whose ones digit is 0 is divisible by 2 and by 5.” This means that a number
that ends in a zero, such as 230, is divisible both by 2 and by 5. The use of and can be
summarized in the following chart.

A B A and B

True True True
True False False
False True False
False False False

The statement “not A” is true if and only if A is false. For example, the statement “AllMathematical use of not.

primes are odd” is false. Thus the statement “Not all primes are odd” is true. Again, we can
summarize the use of not in a chart.

A not A

True False
False True

Thus the mathematical usage of and and not corresponds closely with standard English.
The use of or, however, does not. In standard English, or often suggests a choice of one optionMathematical use of or.

or the other, but not both. Consider the question, “Tonight, when we go out for dinner, would
you like to have pizza or Chinese food?” The implication is that we’ll dine on one or the other,
but not both.

In contradistinction, the mathematical or allows the possibility of both. The statement “A
or B” means that A is true, or B is true, or both A and B are true. For example, consider the
following:

Suppose x and y are integers with the property that xjy and yjx. Then x D y

or x D !y.

The conclusion of this result says that we may have any one of the following:

! x D y but not x D !y (e.g., take x D 3 and y D 3).
! x D !y but not x D y (e.g., take x D !5 and y D 5).
! x D y and x D !y, which is possible only when x D 0 and y D 0.

Here is a chart for or statements.

A B A or B

True True True
True False True
False True True
False False False

What Theorems Are Called

Some theorems are more important or more interesting than others. There are alternativeThe word theorem should not be

confused with the word theory. A

theorem is a specific statement that

can be proved. A theory is a broader

assembly of ideas on a particular

issue.

nouns that mathematicians use in place of theorem. Each has a slightly different connotation.
The word theorem conveys importance and generality. The Pythagorean Theorem certainly
deserves to be called a theorem. The statement “The square of an even integer is also even”
is also a theorem, but perhaps it doesn’t deserve such a profound name. And the statement
“6C 3 D 9” is technically a theorem but does not merit such a prestigious appellation.

Here we list words that are alternatives to theorem and offer a guide to their usage.

Result A modest, generic word for a theorem. There is an air of humility in calling your
theorem merely a “result.” Both important and unimportant theorems can be called
results.
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Fact A very minor theorem. The statement “6C 3 D 9” is a fact.

Proposition A minor theorem. A proposition is more important or more general than a
fact but not as prestigious as a theorem.

Lemma A theorem whose main purpose is to help prove another, more important theo-
rem. Some theorems have complicated proofs. Often one can break down the job of
proving a such theorems into smaller parts. The lemmas are the parts, or tools, used to
build the more elaborate proof.

Corollary A result with a short proof whose main step is the use of another, previously
proved theorem.

Claim Similar to lemma. A claim is a theorem whose statement usually appears inside
the proof of a theorem. The purpose of a claim is to help organize key steps in a proof.
Also, the statement of a claim may involve terms that make sense only in the context
of the enclosing proof.

Vacuous Truth

What are we to think of an if-then statement in which the hypothesis is impossible? Consider
the following.

Statement 4.2 (Vacuous) If an integer is both a perfect square and prime, then it is negative.

Is this statement true or false?
The statement is not nonsense. The terms perfect square (see Exercise 3.6), prime, and

negative properly apply to integers.
We might be tempted to say that the statement is false because square numbers and prime

numbers cannot be negative. However, for a statement of the form “If A, then B” to be de-
clared false, we need to find an instance in which clause A is true and clause B is false. In the
case of Statement 4.2, condition A is impossible; there are no numbers that are both a perfect
square and prime. So we can never find an integer that renders condition A true and condition
B false. Therefore, Statement 4.2 is true!

Statements of the form “If A, then B” in which condition A is impossible are called
vacuous, and mathematicians consider such statements true because they have no exceptions.

Recap

This section introduced the notion of a theorem: a declarative statement about mathematics
that has a proof. We discussed the absolute nature of the word true in mathematics. We ex-
amined the if-then and if-and-only-if forms of theorems, as well as alternative language to
express such results. We clarified the way in which mathematicians use the words and, or,
and not. We presented a number of synonyms for theorem and explained their connotations.
Finally, we discussed vacuous if-then statements and noted that mathematicians regard such
statements as true.

4 Exercises 4.1. Each of the following statements can be recast in the if-then form. Please rewrite each
of the following sentences in the form “If A, then B .”
a. The product of an odd integer and an even integer is even.
b. The square of an odd integer is odd.
c. The square of a prime number is not prime.
d. The product of two negative integers is negative. (This, of course, is false.)
e. The diagonals of a rhombus are perpendicular.
f. Congruent triangles have the same area.
g. The sum of three consecutive integers is divisible by three.

4.2. Below you will find pairs of statements A and B . For each pair, please indicate which
of the following three sentences are true and which are false:
! If A, then B .
! If B , then A.
! A if and only if B .
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Note: You do not need to prove your assertions.
a. A: Polygon PQRS is a rectangle. B: Polygon PQRS is a square.
b. A: Polygon PQRS is a rectangle. B: Polygon PQRS is a parallelogram.
c. A: Joe is a grandfather. B: Joe is male.
d. A: Ellen resides in Los Angeles. B: Ellen resides in California.
e. A: This year is divisible by 4. B: This year is a leap year.
f. A: Lines `1 and `2 are parallel. B: Lines `1 and `2 are perpendicular.

For the remaining items, x and y refer to real numbers.
g. A: x > 0. B: x2 > 0.
h. A: x < 0. B: x3 < 0.
i. A: xy D 0. B: x D 0 or y D 0.
j. A: xy D 0. B: x D 0 and y D 0.
k. A: x C y D 0. B: x D 0 and y D 0.

4.3. It is a common mistake to confuse the following two statements:The statement “If B, then A” is

called the converse of the statement

“If A, then B.”
a. If A, then B .
b. If B , then A.
Find two conditions A and B such that statement (a) is true but statement (b) is false.

4.4. Consider the two statements
a. If A, then B .
b. (not A) or B .
Under what circumstances are these statements true?When are they false? Explain why
these statements are, in essence, identical.

4.5. Consider the two statementsThe statement “If (not B), then (not

A)” is called the contrapositive of

the statement “If A, then B.”
a. If A, then B .
b. If (not B), then (not A).
Under what circumstances are these statements true?When are they false? Explain why
these statements are, in essence, identical.

4.6. Consider the two statements
a. A iff B .
b. (not A) iff (not B).
Under what circumstances are these statements true? Under what circumstances are
they false? Explain why these statements are, in essence, identical.

4.7. Consider an equilateral triangle whose side lengths are a D b D c D 1. Notice that in
this case a2

Cb2
6D c2. Explain why this is not a violation of the Pythagorean Theorem.

4.8. Explain how to draw a triangle on the surface of a sphere that has three right angles.A side of a spherical triangle is an

arc of a great circle of the sphere on

which it is drawn.
Do the legs and hypotenuse of such a right triangle satisfy the condition a2

Cb2
D c2?

Explain why this is not a violation of the Pythagorean Theorem.
4.9. Consider the sentence “A line is the shortest distance between two points.” Strictly

speaking, this sentence is nonsense.
Find two errors with this sentence and rewrite it properly.

4.10. Consider the following rather grotesque claim: “If you pick a guinea pig up by its tail,
then its eyes will pop out.” Is this true?

4.11. What are the two plurals of the word lemma?
4.12. More about conjectures.Where do new theorems come from? They are the creations

of mathematicians that begin as conjectures: statements about mathematics whose truth
we have yet to establish. In other words, conjectures are guesses (usually, educated
guesses). By looking at many examples and hunting for patterns, mathematicians ex-
press their observations as statements they hope to prove.

The following items are designed to lead you through the process of making con-
jectures. In each case, try out several examples and attempt to formulate your observa-
tions as a theorem to be proved. You do not have to prove these statements; for now we
simply want you to express what you find in the language of mathematics.

a. What can you say about the sum of consecutive odd numbers starting with 1? That
is, evaluate 1, 1C3, 1C3C5, 1C3C5C7, and so on, and formulate a conjecture.

b. What can you say about the sum of consecutive perfect cubes, starting with 1. That
is, what can you say about 13, 13

C 33, 13
C 33

C 53, 13
C 33

C 53
C 73, and

so on.
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c. Let n be a positive integer. Draw n lines (no two of which are parallel) in the plane.
How many regions are formed?

d. Place n points evenly around a circle. Starting at one point, draw a path to every
other point around the circle until returning to start. In some instances, every point
is visited and in some instances some are missed. Under what circumstances is every
point visited (as in the figure with n D 9)?
Suppose instead of jumping to every second point, we jump to every third point. For
what values of n does the path touch every point?
Finally, suppose we visit every kth point (where k is between 1 and n). When does
the path touch every point?

e. A school has a long hallway of lockers numbered 1, 2, 3, and so on up to 1000.
In this problem we’ll refer to flipping a locker to mean opening a closed locker or
closing an open locker. That is, to flip a locker is to change its closed/open state.
! Student #1 walks down the hallway and closes all the lockers.
! Student #2 walks down the hallway and flips all the even numbered lockers. So

now, the odd lockers are closed and the even lockers are open.
! Student #3 walks down the hall and flips all the lockers that are divisible by 3.
! Student #4 walks down the hall and flips all the lockers that are divisible by 4.
! Likewise students 5, 6, 7, and so on walk down the hall in turn, each flipping

lockers divisible by their own number until finally student 1000 flips the (one
and only) locker divisible by 1000 (the last locker).

Which lockers are open and which are closed? Generalize to any number of lockers.
Note: We ask you to prove your conjecture later; see Exercise 24.19.

5 Proof

We create mathematical concepts via definitions. We then posit assertions about mathematical
notions, and then we try to prove our ideas are correct.

What is a proof ?
In science, truth is borne out through experimentation. In law, truth is ascertained by a

trial and decided by a judge and/or jury. In sports, the truth is the ruling of referees to the best
of their ability. In mathematics, we have proof.

Truth in mathematics is not demonstrated through experimentation. This is not to say
that experimentation is irrelevant for mathematics—quite the contrary! Trying out ideas and
examples helps us to formulate statements we believe to be true (conjectures); we then try to
prove these statements (thereby converting conjectures to theorems).

For example, recall the statement “All prime numbers are odd.” If we start listing the
prime numbers beginning with 3, we find hundreds and thousands of prime numbers, and
they are all odd! Does this mean all prime numbers are odd? Of course not! We simply missed
the number 2.

Let us consider a far less obvious example.

Conjecture 5.1 (Goldbach) Every even integer greater than two is the sum of two primes.

Let’s see that this statement is true for the first few even numbers. We have

4 D 2C 2 6 D 3C 3 8 D 3C 5 10 D 3C 7

12 D 5C 7 14 D 7C 7 16 D 11C 5 18 D 11C 7:

One could write a computer program to verify that the first few billion even numbers (starting
with 4) are each the sum of two primes. Does this imply Goldbach’s Conjecture is true? No!
The numerical evidencemakes the conjecture believable, but it does not prove that it is true. To
date, no proof has been found for Goldbach’s Conjecture, so we simply do not know whether
it is true or false.

A proof is an essay that incontrovertibly shows that a statement is true. Mathematical

Mathspeak! A proof is often called

an argument. In standard English, the

word argument carries a connotation

of disagreement or controversy. No

such negative connotation should be

associated with a mathematical

argument. Indeed, mathematicians

are honored when their proofs are

called “beautiful arguments.” proofs are highly structured and are written in a rather stylized manner. Certain key phrases
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and logical constructions appear frequently in proofs. In this and subsequent sections, we
show how proofs are written.

The theorems we prove in this section are all rather simple. Indeed, you won’t learn any
facts about numbers you probably didn’t already know quite well. The point in this section
is not to learn new information about numbers; the point is to learn how to write proofs. So
without further ado, let’s start writing proofs!

We prove the following:

Proposition 5.2 The sum of two even integers is even.

We write the proof here in full, and then discuss how this proof was created. In this proof,
each sentence is numbered so we can examine the proof piece by piece. Normally we would
write this short proof as a single paragraph and not number the sentences.

Proof Proposition 5.2

1. We show that if x and y are even integers, then x C y is an even integer.
2. Let x and y be even integers.
3. Since x is even, we know by Definition 3.1 that x is divisible by 2 (i.e., 2jx).
4. Likewise, since y is even, 2jy.
5. Since 2jx, we know, by Definition 3.2, that there is an integer a such that x D 2a.
6. Likewise, since 2jy, there is an integer b such that y D 2b.
7. Observe that x C y D 2aC 2b D 2.aC b/.
8. Therefore there is an integer c (namely, aC b) such that x C y D 2c.
9. Therefore (Definition 3.2) 2j.x C y/.

10. Therefore (Definition 3.1) x C y is even.

Let us examine exactly how this proof was written.

! The first step is to convert the statement of the proposition into the if-then form.Convert the statement to if-then

form. The statement reads, “The sum of two even integers is even.”
We convert the statement into if-then form as follows:
“If x and y are even integers, then x C y is an even integer.”
Note that we introduced letters (x and y) to name the two even integers. These letters

come in handy in the proof.
Observe that the first sentence of the proof spells out the proposition in if-then form.
Sentence 1 announces the structure of this proof. The hypothesis (the “if” part) tells

the reader that we will assume that x and y are even integers, and the conclusion (the
“then” part) tells the reader that we are working to prove that x C y is even.

Sentence 1 can be regarded as a preamble to the proof. The proof starts in earnest at
sentence 2.

! The next step is to write the very beginning and the very end of the proof.Write the first and last sentences

using the hypothesis and conclusion

of the statement.
The hypothesis of sentence 1 tells us what to write next. It says, “. . . if x and y are

even integers. . . ,” so we simply write, “Let x and y be even integers.” (Sentence 2)
Immediately after we write the first sentence, we write the very last sentence of the

proof. The last sentence of the proof is a rewrite of the conclusion of the if-then form of
the statement.

“Therefore, x C y is even.” (Sentence 10)
The basic skeleton of the proof has been constructed. We know where we begin (x

and y are even), and we know where we are heading (x C y is even).
! The next step is to unravel definitions. We do this at both ends of the proof.Unravel definitions.

Sentence 2 tells us that x is even. What does this mean? To find out, we check (or
we remember) the definition of the word even. (Take a quick look at Definition 3.1 on
page 4.) It says that an integer is even provided it is divisible by 2. So we know that x is
divisible by 2, and we can also write that as 2jx; this gives sentence 3.

Sentence 4 does the same job as sentence 3. Since the reasoning in sentence 4 is
identical to that of sentence 3, we use the word likewise to flag this parallel construction.

We now unravel the definition of divisible. We consult Definition 3.2 to learn that 2jx

means there is an integer—we need to give that integer a name and we call it a—so that
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x D 2a. So sentence 5 just unravels sentence 3. Similarly (likewise!) sentence 6 unravels
the fact that 2jy (sentence 4), and we know we have an integer b such that y D 2b.

At this point, we are stuck. We have unraveled all the definitions at the beginning of
the proof, so now we return to the end of the proof and work backward!

We are still in the “unravel definitions” phase of writing this proof. The last sentence
of the proof says, “Therefore x C y is even.” How do we prove an integer is even? We
turn to the definition of even, and we see that we need to prove that x C y is divisible by
2. So we know that the penultimate sentence (number 9) should say that xCy is divisible
by 2.

How do we get to sentence 9? To show that an integer (namely, x C y) is divisible
by 2, we need to show there is an integer—let’s call it c—such that .x C y/ D 2c. This
gives sentence 8.

Now we have unraveled definitions from both ends of the proof. Let’s pause a mo-
ment to see what we have. The proof (written more tersely here) reads:

We show that if x and y are even integers, then x C y is an even integer.
Let x and y be even integers. By definition of even, we know that 2jx and 2jy.

By definition of divisibility, we know there are integers a and b such that x D 2a

and y D 2b.

:
:
:

Therefore there is an integer c such that xCy D 2c; hence 2j.xCy/, and therefore
x C y is even.

! The next step is to think. What do we know and what do we need?What do we know? What do we

need? Make the ends meet. We know x D 2a and y D 2b. We need an integer c such that x C y D 2c. So in
this case, it is easy to see that we can take c D a C b because the sum of two integers
is an integer. We fill in the middle of the proof with sentence 7 and we are finished! To
celebrate, and to mark the end of the proof, we append an end-of-proof symbol to the end
of the proof:

This middle step—which was quite easy—is actually the hardest part of the proof.
The translation of the statement of the proposition into if-then form and the unraveling of
definitions are routine; once you have written several proofs, you will find these steps are
easily produced. The hard part comes when you try to make ends meet!

The proof of Proposition 5.2 is the most basic type of proof; it is called a direct

proof. The steps in writing a direct proof of an if-then statement are summarized in Proof
Template 1.

Proof Template 1 Direct proof of an if-then theorem.

! Write the first sentence(s) of the proof by restating the hypothesis of the result. Invent
suitable notation (e.g., assign letters to stand for variables).

! Write the last sentence(s) of the proof by restating the conclusion of the result.
! Unravel the definitions, working forward from the beginning of the proof and back-

ward from the end of the proof.
! Figure out what you know and what you need. Try to forge a link between the two

halves of your argument.

Let’s use the direct proof technique to prove another result.
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Proposition 5.3 Let a, b, and c be integers. If ajb and bjc, then ajc.

The first step in creating the proof of this proposition is to write the first and last sentences
based on the hypothesis and conclusion. This gives

Suppose a, b, and c are integers with ajb and bjc.
. . .

Therefore ajc.

Next we unravel the definition of divisibility.

Suppose a, b, and c are integers with ajb and bjc. Since ajb, there is an integer x such
that b D ax. Likewise there is an integer y such that c D by.
. . .

Therefore there is an integer z such that c D az. Therefore ajc.

We have unraveled the definitions. Let’s consider what we have and what we need.

We have a, b, c, x, and y such that: b D ax and c D by:

We want to find z such that: c D az:

Now we have to think, but fortunately the problem is not too hard. Since b D ax, we can
substitute ax for b in c D by and get c D axy. So the z we need is z D xy. We can use this
to finish the proof of Proposition 5.3.

Suppose a, b, and c are integers with ajb and bjc. Since ajb, there is an integer x such
that b D ax. Likewise there is an integer y such that c D by. Let z D xy. Then
az D a.xy/ D .ax/y D by D c.

Therefore there is an integer z such that c D az. Therefore ajc.

A More Involved Proof

Propositions 5.2 and 5.3 are rather simple and not particularly interesting. Here we develop a
more interesting proposition and its proof.

One of the most intriguing and most difficult issues in mathematics is the pattern of prime
and composite numbers. Here is one pattern for you to consider. Pick a positive integer, cube
it, and then add one. Some examples:

3
3
C 1 D 27C 1 D 28;

4
3
C 1 D 64C 1 D 65;

5
3
C 1 D 125C 1 D 126; and

6
3
C 1 D 216C 1 D 217:

Notice that the results are all composite. (Note that 217 D 7 ! 31.) Try a few more examples
on your own.

Let us try to convert this observation into a proposition for us to prove. Here’s a first (but
incorrect) draft: “If x is an integer, then x3

C 1 is composite.” This is a good start, but when
we examine Definition 3.6, we note that the term composite applies only to positive integers.
If x is negative, then x3

C 1 is either negative or zero.
Fortunately, it’s easy to repair the draft statement; here is a second version: “If x is a

positive integer, then x3
C 1 is composite.” This looks better, but we’re in trouble already

when x D 1 because, in this case, x3
C 1 D 13

C 1 D 2, which is prime. This makes us
worry about the entire idea, but we note that when x D 2, x3

C 1 D 23
C 1 D 9, which is

composite, and we can try many other examples with x > 1 and always meet with success.
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The case x D 1 turns out to be the only positive exception, and this leads us to a third (and
correct) version of the proposition we wish to prove.

Proposition 5.4 Let x be an integer. If x > 1, then x3
C 1 is composite.

Let’s write down the basic outline of the proof.

Let x be an integer and suppose x > 1.
: : :

Therefore x3
C 1 is composite.

To reach the conclusion that x3
C 1 is composite, we need to find a factor of x3

C 1 that
is strictly between 1 and x3

C 1. With luck, the word factor makes us think about factoring
the polynomial x3

C 1 as a polynomial. Recall from basic algebra thatYou might have the following

concern: “I forgot that x3
C 1

factors. How would I ever come up

with this proof?” One idea is to look

for patterns in the factors. We saw

that 63
C 1 D 7 ! 31, so 63

C 1 is

divisible by 7. Trying more

examples, you may notice that

73
C 1 is divisible by 8, 83

C 1 is

divisible by 9, 93
C 1 is divisible by

10, and so on. With luck, that will

help you realize that x3
C 1 is

divisible by xC 1, and then you can

complete the factorization

x3
C 1D .xC 1/!‹.

x
3
C 1 D .x C 1/.x

2
! x C 1/:

This is the “Aha!” insight we need. Both x C 1 and x2
! x C 1 are factors of x3

C 1. For
example, when x D 6, the factors x C 1 and x2

! x C 1 evaluate to 7 and 31, respectively.
Let’s add this insight to our proof.

Let x be an integer and suppose x > 1. Note that x3
C 1 D .x C 1/.x2

! x C 1/.
: : :

Since x C 1 is a divisor of x3
C 1, we have that x3

C 1 is composite.

To correctly say that x C 1 is a divisor of x3
C 1, we need the fact that both x C 1 and

x2
! x C 1 are integers. This is clear, because x itself is an integer. Let’s be sure we include

this detail in our proof.

Let x be an integer and suppose x > 1. Note that x3
C1 D .xC1/.x2

!xC1/. Because
x is an integer, both x C 1 and x2

! x C 1 are integers. Therefore .x C 1/j.x3
C 1/.

: : :

Since x C 1 is a divisor of x3
C 1, we have that x3

C 1 is composite.

The proof isn’t quite finished yet. Consult Definition 3.6; we need that the divisor be
strictly between 1 and x3

C 1, and we have not proved that yet. So let’s figure out what we
need to do. We must prove

1 < x C 1 < x
3
C 1:

The first part is easy. Since x > 1, adding 1 to both sides gives

x C 1 > 1C 1 D 2 > 1:

Showing that xC 1 < x3
C 1 is only slightly more difficult. Working backward, to show

x C 1 < x3
C 1, it will be enough if we can prove that x < x3. Notice that since x > 1,

multiplying both sides by x gives x2 > x, and since x > 1, we have x2 > 1. Multiplying
both sides of this by x gives x3 > x. Let’s take these ideas and add them to the proof.
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Let x be an integer and suppose x > 1. Note that x3
C1 D .xC1/.x2

!xC1/. Because
x is an integer, both x C 1 and x2

! x C 1 are integers. Therefore .x C 1/j.x3
C 1/.

Since x > 1, we have x C 1 > 1C 1 D 2 > 1.
Also x > 1 implies x2 > x, and since x > 1, we have x2 > 1. Multiplying both

sides by x again yields x3 > x. Adding 1 to both sides gives x3
C 1 > x C 1.

Thus x C 1 is an integer with 1 < x C 1 < x3
C 1.

Since xC 1 is a divisor of x3
C 1 and 1 < xC 1 < x3

C 1, we have that x3
C 1 is

composite.

Proving If-and-Only-If Theorems

The basic technique for proving a statement of the form “A iff B” is to prove two if-then
statements. We prove both “If A, then B” and “If B , then A.” Here is an example:

Proposition 5.5 Let x be an integer. Then x is even if and only if x C 1 is odd.

The basic skeleton of the proof is as follows:

Let x be an integer.
.)/ Suppose x is even. . . . Therefore x C 1 is odd.
.(/ Suppose x C 1 is odd. . . . Therefore x is even.

Notice that we flag the two sections of the proof with the symbols .)/ and .(/. This
lets the reader know which section of the proof is which.

Now we unravel the definitions at the front of each part of the proof. (Recall the definition
of odd; see Definition 3.4 on page 5.)

Let x be an integer.
.)/ Suppose x is even. This means that 2jx. Hence there is an integer a such that

x D 2a. . . . Therefore x C 1 is odd.
.(/ Suppose x C 1 is odd. So there is an integer b such that x C 1 D 2b C 1.

. . . Therefore x is even.

The next steps are clear. In the first part of the proof, we have x D 2a, and we want to
prove x C 1 is odd. We just add 1 to both sides of x D 2a to get x C 1 D 2a C 1, and that
shows that x C 1 is odd.

In the second part of the proof, we know xC 1 D 2bC 1, and we want to prove that x is
even. We subtract 1 from both sides and we are finished.

Let x be an integer.
.)/ Suppose x is even. This means that 2jx. Hence there is an integer a such that

x D 2a. Adding 1 to both sides gives x C 1 D 2aC 1. By the definition of odd, x C 1

is odd.
.(/ Suppose x C 1 is odd. So there is an integer b such that x C 1 D 2b C 1.

Subtracting 1 from both sides gives x D 2b. This shows that 2jx and therefore x is
even.

Proof Template 2 shows the basic method for proving an if-and-only-if theorem.
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Proof Template 2 Direct proof of an if-and-only-if theorem.

To prove a statement of the form “A iff B”:

! .)/ Prove “If A, then B .”
! .(/ Prove “If B , then A.”

As you become more comfortable writing proofs, you may find yourself getting boredWhen is it safe to skip steps?

writing the same steps over and over again. We have seen the sequence (1) x is even, so (2) x

is divisible by 2, so (3) there is an integer a such that x D 2a several times already. You
may be tempted to skip step (2) and just write “x is even, so there is an integer a such that
x D 2a.” The decision about skipping steps requires some careful judgment, but here are
some guidelines.

! Would it be easy (and perhaps boring) for you to fill in the missing steps? Are the missing
steps obvious? If you answer yes, then omit the steps.

! Does the same sequence of steps appear several times in your proof(s), but the sequence
of steps is not very easy to reconstruct? Here you have two choices:

– Write the sequence of steps out once, and the next time the same sequence appears,
use an expression such as “as we saw before” or “likewise.”

– Alternatively, if the consequence of the sequence of steps can be described in a state-
ment, first prove that statement, calling it a lemma. Then invoke (refer to) your lemma
whenever you need to repeat those steps.

! When in doubt, write it out.

Let us illustrate the idea of explicitly separating off a portion of a proof into a lemma.
Consider the following statement.

Proposition 5.6 Let a, b, c, and d be integers. If ajb, bjc, and cjd , then ajd .

Here is the proof as suggested by Proof Template 1.

Let a, b, c, and d be integers with ajb, bjc, and cjd .
Since ajb, there is an integer x such that ax D b.
Since bjc, there is an integer y such that by D c.
Since cjd , there is an integer z such that cz D d .
Note that a.xyz/ D .ax/.yz/ D b.yz/ D .by/z D cz D d .
Therefore there is an integer w D xyz such that aw D d .
Therefore ajd .

There is nothing wrong with this proof, but there is a simpler, less verbose way to handle
it. We have already shown that ajb; bjc) ajc in Proposition 5.3. Let us use this proposition
to prove Proposition 5.6.

Here is the alternative proof.

Let a, b, c, and d be integers with ajb, bjc, and cjd .
Since ajb and bjc, by Proposition 5.3 we have ajc.
Now, since ajc and cjd , again by Proposition 5.3 we have ajd .

The key idea is to use Proposition 5.3 twice. Once it was applied to a, b, and c to get ajc.
When we have established that ajc, we can use Proposition 5.3 again on the integers a, c, and
d to finish the proof.

Proposition 5.3 serves as a lemma in the proof of Proposition 5.6.
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Proving Equations and Inequalities

The basic algebraic manipulations you already know are valid steps in a proof. It is not nec-
essary for you to prove that x C x D 2x or that x2

! y2
D .x ! y/.x C y/. In your proofs,

feel free to use standard algebraic steps without detailed comment.
However, even these simple facts can be proved using the fundamental properties of num-

bers and operations (see Appendix D). We show how here, simply to illustrate that algebraic
manipulations can be justified in terms of more basic principles.

For x C x D 2x:

x C x D 1 " x C 1 " x 1 is the identity element for multiplication

D .1C 1/x distributive property

D 2x because 1C 1 D 2.

For .x ! y/.x C y/ D x2
! y2:

.x ! y/.x C y/ D x.x C y/ ! y.x C y/ distributive property

D x
2
C xy ! yx ! y

2 distributive property

D x
2
C xy ! xy ! y

2 commutative property for multiplication

D x
2
C 1xy ! 1xy ! y

2
1 is the identity element for multiplication

D x
2
C .1 ! 1/xy ! y

2 distributive property

D x
2
C 0xy ! y

2 because 1 ! 1 D 0

D x
2
C 0 ! y

2 because anything multiplied by 0 is 0

D x
2
! y

2
0 is the identity element for addition.

Working with inequalities may be less familiar, but the basic steps are the same. For
example, suppose you are asked to prove the following statement: If x > 2 then x2 > x C 1.
Here is a proof:

Proof. We are given that x > 2. Since x is positive, multiplying both sides by x givesWe need to comment that x is

positive because multiplying both

sides of an inequality by a negative

number reverses the inequality.

x2 > 2x. So we have

x
2

> 2x

D x C x

> x C 2 because x > 2

> x C 1 because 2 > 1.

Therefore, by transitivity, x2 > x C 1.

See the discussion of Ordering in

Appendix D for a review of

transitivity.

Recap

We introduced the concept of proof and presented the basic technique of writing a direct proof
for an if-then statement. For if-and-only-if statements, we apply this basic technique to both
the forward .)/ and the backward .(/ implications.

5 Exercises 5.1. Prove that the sum of two odd integers is even.
5.2. Prove that the sum of an odd integer and an even integer is odd.
5.3. Prove that if n is an odd integer, then !n is also odd.
5.4. Prove that the product of two even integers is even.
5.5. Prove that the product of an even integer and an odd integer is even.
5.6. Prove that the product of two odd integers is odd.
5.7. Prove that the square of an odd integer is odd.
5.8. Prove that the cube of an odd integer is odd.
5.9. Suppose a, b, and c are integers. Prove that if ajb and ajc, then aj.b C c/.
5.10. Suppose a, b, and c are integers. Prove that if ajb, then aj.bc/.
5.11. Suppose a, b, d , x, and y are integers. Prove that if d ja and d jb, then d j.ax C by/.
5.12. Suppose a, b, c, and d are integers. Prove that if ajb and cjd , then .ac/j.bd/.
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5.13. Let x be an integer. Prove that x is odd if and only if x C 1 is even.
5.14. Let x be an integers. Prove that x is odd if and only if there is an integer b such that

Note that Exercise 5.14 provides an

alternative to Definition 3.4. To show

that a number x is odd we can either

look for an integer a so that

x D 2aC 1 (using the definition) or

we can look for an integer b so that

x D 2b ! 1 (using the result you

prove here).

x D 2b ! 1.
5.15. Let x be an integer. Prove that 0jx if and only if x D 0.
5.16. Let a and b be integers. Prove that a < b if and only if a " b ! 1.
5.17. Let a be a number with a > 1. Prove that a number x is strictly between 1 and

p

a if
and only if a=x is strictly between

p

a and a.
You may assume that 1 <

p

a < a. (We ask you to prove this later; see Exer-
cise 20.10.)

5.18. Prove that the difference between consecutive perfect squares is odd.By consecutive perfect squares we

mean numbers such as 32 and 42 or

122 and 132.
5.19. Let a be a perfect square. Prove that a is the square on a nonnegative integer.
5.20. For real numbers a and b, prove that if 0 < a < b, then a2 < b2.
5.21. Prove that the difference between distinct, nonconsecutive perfect squares is composite.
5.22. Prove that an integer is odd if and only if it is the sum of two consecutive integers.
5.23. Suppose you are asked to prove a statement of the form “If A or B , then C .” Explain

why you need to prove (a) “If A, then C ” and also (b) “If B , then C .” Why is it not
enough to prove only one of (a) and (b)?

5.24. Suppose you are asked to prove a statement of the form “A iff B .” The standard method
is to prove both A) B and B ) A.

Consider the following alternative proof strategy: Prove bothA) B and .not A/)

.not B/. Explain why this would give a valid proof.

6 Counterexample

In the previous section, we developed the notion of proof: a technique to demonstrate ir-
refutably that a given statement is true. Not all statements about mathematics are true! Given
a statement, how do we show that it is false? Disproving false statements is often simpler than
proving theorems. The typical way to disprove an if-then statement is to create a counterex-
ample. Consider the statement “If A, then B .” A counterexample to such a statement would
be an instance where A is true but B is false.

For example, consider the statement “If x is a prime, then x is odd.” This statement is
false. To prove that it is false, we just have to give an example of an integer that is prime but
is not odd. The integer 2 has the requisite properties.

Let’s consider another false statement.

Statement 6.1 (false) Let a and b be integers. If ajb and bja, then a D b.

This statement appears plausible. It seems that if ajb, then a " b, and if bja, then b " a,
and so a D b. But this reasoning is incorrect.

To disprove Statement 6.1, we need to find integers a and b that, on the one hand, satisfy
ajb and bja but, on the other hand, do not satisfy a D b.

Here is a counterexample: Take a D 5 and b D !5. To check that this is a counterexam-
ple, we simply note that, on the one hand, 5j ! 5 and !5j5 but, on the other hand, 5 6D !5.

Proof Template 3 Refuting a false if-then statement via a counterexample.

To disprove a statement of the form “If A, then B”:
Find an instance where A is true but B is false.

Refuting false statements is usually easier than proving true statements. However, finding
counterexamples can be tricky. To create a counterexample, I recommend you try creating
several instances where the hypothesis of the statement is true and check each to see whether
or not the conclusion holds. All it takes is one counterexample to disprove a statement.

Unfortunately, it is easy to get stuck in a thinking rut. For Statement 6.1, we might con-
sider 3j3 and 4j4 and 5j5 and never think about making one number positive and the other
negative.
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Try to break out of such a rut by creating strange examples. Don’t forget about the number
0 (which acts strangely) and negative numbers. Of course, following that advice, we might still
be stuck in the rut 0j0, !1j ! 1, !2j ! 2, and so on.

Here is a strategy for finding counterexamples. Begin by trying to prove the statement;A strategy for finding

counterexamples. when you get stuck, try to figure out what the problem is and look there to build a counterex-
ample.

Let’s apply this technique to Statement 6.1. We start, as usual, by converting the hypoth-
esis and conclusion of the statement into the beginning and end of the proof.

Let a and b be integers with ajb and bja. . . . Therefore a D b.

Next we unravel definitions.

Let a and b be integers with ajb and bja. Since ajb, there is an integer x such that
b D ax. Since bja, there is an integer y such that a D by. . . . Therefore a D b.

Now we ask: What do we know? What do we need? We know

b D ax and a D by

and we want to show a D b. To get there, we can try to show that x D y D 1. Let’s try to
solve for x or y.

Since we have two expressions in terms of a and b, we can try substituting one in the
other. We use the fact that b D ax to eliminate b from a D by. We get

a D by ) a D .ax/y ) a D .xy/a:

It now looks quite tempting to divide both sides of the last equation by a, but we need to worry
that perhaps, a D 0. Let’s ignore the possibility of a D 0 for just a moment and go ahead and
write xy D 1. We see that we have two integers whose product is 1. And we realize at this
point that there are two ways that can happen: either 1 D 1 " 1 or 1 D !1 " !1. So although
we know xy D 1, we can’t conclude that x D y D 1 and finish the proof. We’re stuck and
now we consider the possibility that Statement 6.1 is false. We ask: What if x D y D !1?
We see that this would imply that a D !b; for example, a D 5 and b D !5. And then we
realize that in such a case, ajb and bja but a 6D b. We have found a counterexample. Do we
need to go back to our worry that perhaps a D 0? No! We have refuted the statement with our
counterexample. The attempted proof served only to help us find a counterexample.

Recap

This section showed how to disprove an if-then statement by finding an example that satisfies
the hypothesis of the statement but not the conclusion.

6 Exercises 6.1. Disprove: If a and b are integers with ajb, then a # b.
6.2. Disprove: If a and b are nonnegative integers with ajb, then a # b.

Note: A counterexample to this statement would also be a counterexample for the pre-
vious problem, but not necessarily vice versa.

6.3. Disprove: If a, b, and c are positive integers with aj.bc/, then ajb or ajc.
6.4. Disprove: If a, b, and c are positive integers, then a.bc/

D .ab/c .
6.5. Disprove: If p and q are prime, then p C q is composite.
6.6. Disprove: If p is prime, then 2p

! 1 is also prime.
6.7. Disprove: If n is a nonnegative integer, then 2.2n/

C 1 is prime.
6.8. An integer is a palindrome if it reads the same forwards and backwards when expressed

in base-10. For example, 1331 is a palindrome.
Disprove: All palindromes with two or more digits are divisible by 11.

6.9. Consider the polynomial n2
C nC 41.

(a) Calculate the value of this polynomial for n D 1; 2; 3; : : : ; 10.
Notice that all the numbers you computed are prime.

(b) Disprove: If n is a positive integer, then n2
C nC 41 is prime.
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6.10. What does it mean for an if-and-only-if statement to be false? What properties should
a counterexample for an if-and-only-if statement have?

6.11. Disprove: An integer x is positive if and only if x C 1 is positive.
6.12. Disprove: Two right triangles have the same area if and only if the lengths of their

hypotenuses are the same.
6.13. Disprove: A positive integer is composite if and only if it has two different prime fac-

tors.

7 Boolean Algebra

Algebra is useful for reasoning about numbers. An algebraic relationship, such as x2
! y2

D

.x ! y/.x C y/, describes a general relationship that holds for any numbers x and y.
In a similar way, Boolean algebra provides a framework for dealing with statements. We

begin with basic statements, such as “x is prime,” and combine them using connectives such
as if-then, and, or, not, and so on.

For example, in Section 4 youwere asked (see Exercise 4.4) to explain why the statements
“If A, then B” and “(not A) or B” mean essentially the same thing. In this section, we present
a simple method for showing that such sentences have the same meaning.

In an ordinary algebraic expression, such as 3x!4, letters stand for numbers, and the op-
erations are the familiar ones of addition, subtraction, multiplication, and so forth. The value
of the expression 3x ! 4 depends on the number x. When x D 1, the value of the expression
is !1, and if x D 10, the value is 26.

Boolean algebra also has expressions containing letters and operations. Letters (variables)Variables stand for TRUE and FALSE.

in a Boolean expression do not stand for numbers. Rather, they stand for the values TRUE and
FALSE. Thus letters in a Boolean algebraic expression can only have two values!

There are several operations we can perform on the values TRUE and FALSE. The mostThe basic operations of Boolean

algebra are ^, _, and :. These

operations are also present in many

computer languages. Since computer

keyboards typically do not have these

symbols, the symbols & (for ^), j

(for _), and! (for :) are often used

instead.

basic operations are called and (symbol: ^), or (symbol: _), and not (symbol: :).
We begin with ^. To define ^, we need to define the value of x^y for all possible values

of x and y. Since there are only two possible values for each of x and y, this is not hard.
Without further ado, here is the definition of the operation ^.

TRUE ^ TRUE D TRUE

TRUE ^ FALSE D FALSE

FALSE ^ TRUE D FALSE

FALSE ^ FALSE D FALSE:

In other words, the value of the expression x ^ y is TRUE when both x and y are TRUE and
is FALSE otherwise. A convenient way to write all this is in a truth table, which is a chart
showing the value of a Boolean expression depending on the values of the variables. Here is
a truth table for the operation ^.

x y x ^ y

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

The definition of the operation ^ is designed to mirror exactly the mathematical use of
the English word and. Similarly, the Boolean operation _ is designed to mirror exactly the
mathematical use of the English word or. Here is the definition of _.

TRUE _ TRUE D TRUE

TRUE _ FALSE D TRUE

FALSE _ TRUE D TRUE

FALSE _ FALSE D FALSE:
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In other words, the value of the expression x _ y is TRUE in all cases except when both
x and y are FALSE. We summarize this in a truth table.

x y x _ y

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

The third operation,:, is designed to reproduce the mathematical use of the English word
not:

:TRUE D FALSE

:FALSE D TRUE:

In truth table form, : is as follows:

x :x

TRUE FALSE

FALSE TRUE

Ordinary algebraic expressions (e.g., 3!2"4) may combine several operations. Likewise
we can combine the Boolean operations. For example, consider

TRUE ^ ..:FALSE/ _ FALSE/:

Let us calculate the value of this expression step by step:

TRUE ^ ..:FALSE/ _ FALSE/ D TRUE ^ .TRUE _ FALSE/

D TRUE ^ TRUE

D TRUE:

In algebra we learn how to manipulate formulas so we can derive identities such as

.x C y/
2
D x

2
C 2xy C y

2
:

In Boolean algebra we are interested in deriving similar identities. Let us begin with a simple
example:

x ^ y D y ^ x:

What does this mean? The ordinary algebraic identity .xCy/2
D x2

C 2xyCy2 means that
once we choose (numeric) values for x and y, the two expressions .xCy/2 and x2

C2xyCy2

must be equal. Similarly, the identity x^y D y^x means that once we choose (truth) values
for x and y, the results x ^ y and y ^ x must be the same.

Now it would be ridiculous to try to prove an identity such as .xCy/2
D x2

C2xyCy2

by trying to substitute all possible values for x and y—there are infinitely many possibilities!
However, it is not hard to try all the possibilities to prove a Boolean algebraic identity. In the
case of x ^ y D y ^ x, there are only four possibilities. Let us summarize these in a truth
table.

x y x ^ y y ^ x

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE FALSE

FALSE TRUE FALSE FALSE

FALSE FALSE FALSE FALSE

By running through all possible combinations of values for x and y, we have a proof that
x ^ y D y ^ x.

When two Boolean expressions, such as x^y and y^x, are equal for all possible valuesLogical equivalence.

of their variables, we call these expressions logically equivalent. The simplest method to show
that two Boolean expressions are logically equivalent is to run through all the possible values
for the variables in the two expressions and to check that the results are the same in every
case.
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Let us consider a more interesting example.

Proposition 7.1 The Boolean expressions :.x ^ y/ and .:x/ _ .:y/ are logically equivalent.

Proof. To show this is true, we construct a truth table for both expressions. To save space,
we write T for TRUE and F for FALSE.

x y x ^ y :.x ^ y/ :x :y .:x/ _ .:y/

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

The important thing to notice is that the columns for:.x^y/ and .:x/_.:y/ are exactly the
same. Therefore, no matter how we choose the values for x and y, the expressions :.x ^ y/

and .:x/ _ .:y/ evaluate to the same truth value. Therefore the expressions :.x ^ y/ and
.:x/ _ .:y/ are logically equivalent.

Proof Template 4 Truth table proof of logical equivalence

To show that two Boolean expressions are logically equivalent:
Construct a truth table showing the values of the two expressions for all possible values
of the variables.

Check to see that the two Boolean expressions always have the same value.

Proofs by means of truth tables are easy but dull. The following result summarizes the
basic algebraic properties of the operations ^, _, and :. In several cases, we give names for
the properties.

Theorem 7.2

! x ^ y D y ^ x and x _ y D y _ x. (Commutative properties)
! .x ^ y/ ^ z D x ^ .y ^ z/ and .x _ y/ _ z D x _ .y _ z/. (Associative properties)
! x ^ TRUE D x and x _ FALSE D x. (Identity elements)
!
:.:x/ D x.

! x ^ x D x and x _ x D x.
! x ^ .y _ z/ D .x ^ y/ _ .x ^ z/ and x _ .y ^ z/ D .x _ y/ ^ .x _ z/. (Distributive

properties)
! x ^ .:x/ D FALSE and x _ .:x/ D TRUE.
!
:.x ^ y/ D .:x/ _ .:y/ and :.x _ y/ D .:x/ ^ .:y/. (DeMorgan’s Laws)

All of these logical equivalences are easily proved via truth tables. In some of these
identities, there is only one variable (e.g., x^:x D FALSE); in this case, there would be only
two rows in the truth table (one for x D TRUE and one for x D FALSE). In the cases where
there are three variables, there are eight rows in the truth table as .x; y; z/ take on the possible
values .T;T;T/, .T;T;F/, .T;F;T/, .T;F;F/, .F;T;T/, .F;T;F/, .F;F;T/, and .F;F;F/.

More Operations

The operations ^, _, and : were created to replicate mathematicians’ use of the words and,
or, and not. We now introduce two more operations,! and$, designed to model statements
of the form “If A, then B” and “A if and only if B ,” respectively. The simplest way to define
these is through truth tables.
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x y x ! y

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE TRUE

FALSE FALSE TRUE

and

x y x $ y

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE TRUE

The expression x ! y models an if-then statement. We have x ! y D TRUE except
when x D TRUE and y D FALSE. Likewise the statement “If A, then B” is true unless
there is an instance in which A is true but B is false. Indeed, the arrow! reminds us of the
implication arrow).

Similarly, the expression x $ y models the statement “A if and only if B .” The expres-
sion x $ y is true provided x and y are either both true or both false. Likewise the statement
“A () B” is true provided that in every instance A and B are both true or both false.

Let us revisit the issue that the statements “If A, then B” and “(not A) or B” mean the
same thing (see Exercise 4.4).

Proposition 7.3 The expressions x ! y and .:x/ _ y are logically equivalent.

Proof. We construct a truth table for both expressions.

x y x ! y :x y .:x/ _ y

TRUE TRUE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE FALSE FALSE FALSE

FALSE TRUE TRUE TRUE TRUE TRUE

FALSE FALSE TRUE TRUE FALSE TRUE

The columns for x ! y and .:x/ _ y are the same, and therefore these expressions are
logically equivalent.

Proposition 7.3 shows how the operation! can be reexpressed just in terms of the ba-
sic operations _ and :. Similarly, the operation $ can be expressed in terms of the basic
operations ^, _, and : (see Exercise 7.15).

Recap

This section presented Boolean algebra as “arithmetic” with the values TRUE and FALSE.
The basic operations are ^, _, and :. Two Boolean expressions are logically equivalent pro-
vided they always yield the same values when we substitute for their variables. We can prove
Boolean expressions are logically equivalent using truth tables. We concluded this section by
defining the operations! and$.

7 Exercises 7.1. Do the following calculations:
a. TRUE ^ TRUE ^ TRUE ^ TRUE ^ FALSE.
b. .:TRUE/ _ TRUE.
c. :.TRUE _ TRUE/.
d. .TRUE _ TRUE/ ^ FALSE.
e. TRUE _ .TRUE ^ FALSE/.

The point of the last four is that the order in which you do the operations matters!
Compare the expressions in (b)–(c) and (d)–(e) and note that they are the same except
for the placement of the parentheses.

Now rethink your answer to (a). Does your answer to (a) depend on the order in
which you do the operations?

7.2. Prove by use of truth tables as many parts of Theorem 7.2 as you can tolerate.
7.3. Prove: .x ^ y/ _ .x ^ :y/ is logically equivalent to x.
7.4. Prove: x ! y is logically equivalent to .:y/! .:x/.An if-then statement is logically

equivalent to its contrapositive. 7.5. Prove: x $ y is logically equivalent to .:x/$ .:y/.
7.6. Prove: x $ y is logically equivalent to .x ! y/ ^ .y ! x/.
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7.7. Prove: x $ y is logically equivalent to .x ! y/ ^ ..:x/! .:y//.
7.8. Prove: .x _ y/! z is logically equivalent to .x ! z/ ^ .y ! z/.
7.9. Suppose we have two Boolean expressions that involve ten variables. To prove that

these two expressions are logically equivalent, we construct a truth table. How many
rows (besides the “header” row) would this table have?

7.10. How would you disprove a logical equivalence? Show the following:
a. x ! y is not logically equivalent to y ! x.An if-then statement is not logically

equivalent to its converse. b. x ! y is not logically equivalent to x $ y.
c. x _ y is not logically equivalent to .x ^ :y/ _ ..:x/ ^ y/.

7.11. A tautology is a Boolean expression that evaluates to TRUE for all possible values of its
variables. For example, the expression x_:x is TRUE both when x D TRUE and when
x D FALSE. Thus x _ :x is a tautology.

Explain how to use a truth table to prove that a Boolean expression is a tautology
and prove that the following are tautologies.
a. .x _ y/ _ .x _ :y/.
b. .x ^ .x ! y//! y.
c. .:.:x//$ x.
d. x ! x.
e. ..x ! y/ ^ .y ! z//! .x ! z/.
f. FALSE! x.
g. .x ! FALSE/! :x.
h. ..x ! y/ ^ .x ! :y//! :x.

7.12. In the previous problem you proved that certain Boolean formulas are tautologies by
creating truth tables. Another method is to use the properties listed in Theorem 7.2
together with the fact that x ! y is equivalent to .:x/ _ y (Proposition 7.3).

For example, part (b) asks you to establish that the formula .x ^ .x ! y//! y is
a tautology. Here is a derivation of that fact:

.x ^ .x ! y//! y D Œx ^ .:x _ y/!! y translate!

D Œ.x ^ :x/ _ .x ^ y/!! y distributive

D ŒFALSE _ .x ^ y/!! y

D .x ^ y/! y identity element

D .:.x ^ y// _ y translate!

D .:x _ :y/ _ y De Morgan

D :x _ .:y _ y/ associative

D :x _ TRUE

D TRUE identity:

Use this technique to prove that the other formulas in Exercise 7.11 are tautologies.
You may replace x  y with y ! x (which, in turn, is equivalent to :y _ x) and

you may replace x $ y with .x ! y/ ^ .y ! x/.
7.13. A contradiction is a Boolean expression that evaluates to FALSE for all possible values

of its variables. For example, x ^ :x is a contradiction.
Prove that the following are contradictions:

a. .x _ y/ ^ .x _ :y/ ^ :x.
b. x ^ .x ! y/ ^ .:y/.
c. .x ! y/ ^ ..:x/! y/ ^ :y.

7.14. Suppose A and B are Boolean expressions—that is, A and B are formulas involving
variables (x, y, z, etc.) and Boolean operations (^, _, :, etc.).

Prove: A is logically equivalent to B if and only if A$ B is a tautology.
7.15. The expression x ! y can be rewritten in terms of only the basic operations^, _, and

:; that is, x ! y D .:x/ _ y.
Find an expression that is logically equivalent to x $ y and uses only the basic

operations ^, _, and : (and prove that you are correct).
7.16. Here is another Boolean operation called exclusive or; it is denoted by the symbol _.The phrase exclusive or is sometimes

written as xor. It is defined in the following table.
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x y x_y

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

Please do the following:
a. Prove that _ obeys the commutative and associative properties; that is, prove the

logical equivalences x_y D y_x and .x_y/_z D x_.y_z/.
b. Prove that x_y is logically equivalent to .x ^ :y/ _ ..:x/ ^ y/. (Thus _ can be

expressed in terms of the basic operations ^, _, and :.)
c. Prove that x_y is logically equivalent to .x_y/^ .:.x^y//. (This is another way

that _ can be expressed in terms of ^, _, and :.)
d. Explain why the operation _ is called exclusive or.

7.17. We have discussed several binary Boolean operations:^,_,!,$, and (in the previousA binary operation is an operation

that combines two values. The

operation : is not binary because it

works on just one value at a time; it

is called unary.

problem) _. How many different binary Boolean operations can there be? In other
words, in how many different ways can we complete the following chart?

x y x ! y

TRUE TRUE ?
TRUE FALSE ?
FALSE TRUE ?
FALSE FALSE ?

There aren’t too many possibilities, and, in worst case, you can try writing out all of
them. Be sure to organize your list carefully so you don’t miss any or accidentally list
the same operation twice.

7.18. We have seen that the operations!,$, and _ can be reexpressed in terms of the basic
operations ^, _, and :. Show that all binary Boolean operations (see the previous
problem) can be expressed in terms of these basic three.

7.19. Prove that x _ y can be reexpressed in terms of just ^ and : so all binary Boolean
operations can be reduced to just two basic operations.

7.20. Here is yet another Boolean operation called nand; it is denoted by the symbol ^. WeNand.

define x^y to be :.x ^ y/.
Please do the following:

a. Construct a truth table for ^.
b. Is the operation ^ commutative? Associative?
c. Show how the operations x ^ y and :x can be reexpressed just in terms of ^.
d. Conclude that all binary Boolean operations can be reexpressed just in terms of ^

alone.

Chapter 1 Self Test

1. True or false: Every positive integer is either prime or composite. Explain your answer.
2. Find all integers x for which xj.x C 2/. You do not need to prove your answer.
3. Let a and b be positive integers. Explain why the notation ajbC1 can be interpreted only

as aj.b C 1/ and not as .ajb/C 1.
4. Write the following statement in if-then form: “Every perfect integer is even.”It is not known whether every perfect

number is even, but it is conjectured

that there are no odd perfect

numbers.

5. Write the converse of the statement “If you love me, then you will marry me.”
6. Determine which of the following statements are true and which are false. You should

base your reply on your common knowledge of mathematics; you do not need to prove
your answers.

a. Every integer is positive or negative.
b. Every integer is even and odd.
c. If x is an integer and x > 2 and x is prime, then x is odd.
d. Let x and y be integers. We have x2

D y2 if and only if x D y.
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e. The sides of a triangle are all congruent to each other if and only if its three angles are
all 60ı.

f. If an integer x satisfies x D x C 1, then x D 6.

7. Consider the following statement (which you are not expected to understand): “If a ma-
troid is graphic, then it is representable.”

Write the first and last lines of a direct proof of this statement.
It is customary to use the letter M to stand for a matroid.

8. The following statement is false: If x, y, and z are integers and x > y, then xz > yz.
Please do the following:

a. Find a counterexample.
b. Modify the hypothesis of the statement by adding a condition concerning z so that the

edited statement is true.
9. Prove or disprove the following statements:

a. Let a; b; c be integers. If ajc and bjc, then .aC b/jc.
b. Let a; b; c be integers. If ajb, then .ac/j.bc/.

10. Consider the following proposition. Let N be a two-digit number and let M be the num-
ber formed from N by reversing N ’s digits. Now compareN 2 and M 2. The digits of M 2

are precisely those of N 2, but reversed.
For example:

10
2
D 100 01

2
D 001

11
2
D 121 11

2
D 121

12
2
D 144 21

2
D 441

13
2
D 169 31

2
D 961

and so on.
Here is a proof of the proposition:

Proof. Since N is a two-digit number, we can write N D 10aC b where a and b are
the digits of N . Since M is formed from N by reversing digits, M D 10b C a.

Note that N 2
D .10aC b/2

D 100a2
C 20ab C b2

D .a2/ ! 100C .2ab/ ! 10C

.b2/ ! 1, so the digits of N 2 are, in order, a2; 2ab; b2.
Likewise, M 2

D .10b C a/2
D .b2/ ! 100C .2ab/ ! 10C .a2/ ! 1, so the digits

of M 2 are, in order, b2; 2ab; a2, exactly the reverse of N 2.

Your job: Show that the proposition is false and explain why the proof is invalid.

11. Suppose we are asked to prove the following identity:

x.x C y " 1/" y.x C 1/ D x.x " 1/" y:

The identity is true (i.e., the equation is valid for all real numbers x and y).
The following “proof” is incorrect. Explain why.

Proof. We begin with

x.x C y " 1/" y.x C 1/ D x.x " 1/" y

and expand the terms (using the distributive property)

x
2
C xy " x " yx " y D x

2
" x " y:

We cancel the terms x2, "x, and "y from both sides to give

xy " yx D 0;

and finally xy and "yx cancel to give

0 D 0;

which is correct.
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12. Are the Boolean expressions x ! :y and :.x ! y/ logically equivalent? Justify your
answer.

13. Is the Boolean expression .x ! y/ _ .x ! :y/ a tautology? Justify your answer.
14. Prove that the sum of any three consecutive integers is divisible by three.
15. In the previous problem you were asked to prove that the sum of any three consecutive

integers is divisible by three. Note, however, that the sum of any four consecutive integers
is never divisible by four. For example, 10C 11C 12C 13 D 46, which is not divisible
by four.

For which positive integers a is the sum of a consecutive integers divisible by a?
That is, complete the following sentence to give a true statement:

Let a be a positive integer. The sum of a consecutive integers is divisible by a if
and only if . . . .

You need not prove your conjecture.
16. Let a be an integer. Prove: If a ! 3, then a2 > 2aC 1.
17. Suppose a is a perfect square and a ! 9. Prove that a " 1 is composite.See Exercise 3.6 and its solution on

page 409 for the definition of perfect

square.
18. Consider the following definition:

A pair of positive integers, x and y, are called square mates if their sum, x C y is a
perfect square. (The concept of square mates was contrived just for this test, problems 18
to 20.)

For example, 4 and 5 are square mates because 4C 5 D 9 D 32. Likewise, 8 and 8

are square mates because 8C 8 D 16 D 42. However, 3 and 8 are not square mates.
Explain why 10 and "1 are not square mates.

19. Let x be a positive integer. Prove that there is an integer y that is greater than x such that
x and y are square mates.

20. Prove that if x is an integer and x ! 5, then x has a square mate y with y < x.
You may use the following fact in your proof. If x is a positive integer, then x lies

between two consecutive perfect squares; that is, there is a positive integer a such that
a2
# x < .aC 1/2.
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