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Overview for Today

* Logistics

* HWS5 Most Popular Question Review
* Question | (3 minutes)

* Question 2 (3 minutes)

* Question 3 (4 minutes)

* Question 4 (5 minutes)

* Question 5 (6 minutes)
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Logistics

* HWS5 due 11:59 PM on Monday, November 25

— Two duplicate questions have been removed. The updated homework
file is now available on the course website. The assighment should
include 7 exercises, with the first one titled “Contrapositive...”

e Midterm 2 has been canceled

— The professor will adjust the weight of the remaining assessments
upon returning

— The final exam will still take place as scheduled

* No recitation on Wednesday, November 27 (Friday class
schedule)
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HWS5 Most Popular Question Review

Vote for the question in HW5 that you are most interested in
going over and we’ll review it here!
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Strong Induction Review

A technique for proving that a statement is true for all values of
a variable:

Base case: prove that the statement is true for the first
values of the variable

Inductive step: prove that if the statement is true for all
values up to a certain point, it must also be true for the next
value.
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Weak vs Strong Induction Review

Weak induction: assumes that a statement is true at a specific step k

Strong induction: assumes a statement is true at all steps from the
base case to the step k.

Useful when the result for n = k-1 depends on the result of some

smaller value of n, but not necessarily the value that immediately
precedes (k)

In other words: we use strong induction when the truth of the next
step relies on the truth of multiple previous steps, not just the one
immediately preceding.
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Question |

Exercise 1 For all integers,

Take the following statement: ’If a number leaves a remainder of 3 when divided by 4, then its square leaves a remainder of
1 when divided by 4.

A. Rewrite the statement using logical symbols and implications.

B. Formulate the negation of the statement using logical symbols and implications.
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Answer |

Exercise 1

Take the following statement: 'If a number leaves a remainder of 3 when divided by 4, then its square leaves a remainder of
1 when divided by 4.

A. Rewrite the statement using logical symbols and implications.

Solution: We can use mod to represent the remainder left when dividing by 4.
vz, (z =3 (mod 4) — 22 =1 (mod 4))

[ )
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Answer | (cont.)

Exercise 1

Take the following statement: 'If a number leaves a remainder of 3 when divided by 4, then its square leaves a remainder of
1 when divided by 4.

B. Formulate the negation of the statement using logical symbols and implications.

Solution: The original statement: ¥V, (z =3 mod 4 — 22 =1 mod 4)

Replace the Implication: Vz, (- (z =3 mod 4) V (z2 =1 mod 4))

Add Negation and Flip to Existential Quantifier: 3z, ~(—~(z =3 mod 4) V (z> =1 mod 4))
Apply DeMorgan’s law: 3z, —~(—((z =3 mod 4) A ~(22 =1 mod 4)))

Final Outcome: 3z, (z =3 mod 4) A (22 # 1 mod 4)

[ )
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Question 2

Exercise 2
Suppose you have 10 distinct integers. Show that there are two of these integers such that their difference is divisible by 9.
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Answer 2

Exercise 2
Suppose you have 10 distinct integers. Show that there are two of these integers such that their difference is divisible by 9.

Solution: When dealing with 10 distinct integers, their possible remainders when divided by 9 are:
0,1,2,3,4,5,6,7, and 8.

If we take the integers modulo 9, there are only 9 possible remainders.

According to the Pigeonhole Principle, since there are 10 integers and only 9 possible remainders when divided by
9, at least two of these integers must have the same remainder when divided by 9.

Let’s say these two integers are a and b, where a > b.

The difference between these integers, a — b, would be divisible by 9, as the difference represents a multiple of 9
due to the equality of their remainders.
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Detour: Fibonacci Numbers

. The first two numbers in the Fibonacci sequence are
ones, which means:

FI = |, and F2= I

. Every subsequent Fibonacci number is the sum of the two
previous numbers in the sequence, which means:

I:n = I:n-I-l- Fn-2

. Altogether, the sequence looks like this:
1,1,2,3,5,8, 13,21, 34, 55,89, 144,233, 377 ...
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Question 3

Exercise 3
Let F; represent the i¢th Fibonacci number. Show that

iFi:FrHﬂQ_l
=1
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Answer 3

Exercise 3
Let F; represent the ith Fibonacci number. Show that

i F,=F,42—-1
=1

Solution: We know that F; =1, F, = landthat F,, = F,,_{ + F},_».
Base case
F; =1 and we see F3 = 2 and 2 -1 = 1 so it holds for 1.
Let us assume that

k
ZFi = Fr42—1
i=0

[ )
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Answer 3 (cont.)

k
D Fi=Fip-1
=0

Now consider the summation

This is basically the summation in the induction hypothesis with one extra term.

k+1 k

ZF Y Fi+ Frn

i=0
= Fj.9 — 1+ Fj; by induction hyp.

= F}..3 — 1 since each fibonacci term is the summation of the two previous ones

and this is what we wanted to show!
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Question 4

Exercise 4
Use strong induction to prove that you can make any dollar amount greater than or equal to 4 dollars (don’t worry about
cents) using only 2 dollar and 5 dollar notes.
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Answer 4

Exercise 4
Use strong induction to prove that you can make any dollar amount greater than or equal to 4 dollars (don’t worry about
cents) using only 2 dollar and 5 dollar notes.

Solution: Base cases:
We can see that we are going to need two base cases here.
Note that 4 can be made with two 2 dollar bills. 5 can be made with a single 5 dollar bill.

Inductive Hypothesis:
We will assume that all values from 4 to k can be made with 2 dollar bills and 5 dollar bills.

Inductive Step:

Now consider k+1. If k+1 happens to be 5, we have already shown how to make that amount.

So we will consider £ + 1 > 6. Then k + 1 — 2 > 4. It falls within the region of the induction hypothesis. So we know
how to make £ — 1 with 2 and 5 dollar bills by the induction hypothesis. We can just add another 2 dollar bill and be
done.

This coupled with the induction hypothesis will complete the proof by induction.
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Question 5

Exercise 5
Prove using strong induction that every positive integer n has a binary expression.
Namely, we have to show that there exists ¢; € {0, 1} such that:

n=c 2 te i1 +...+2%2+e- 2+
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Answer 5

Exercise 5
Prove using strong induction that every positive integer n has a binary expression.
Namely, we have to show that there exists ¢; € {0, 1} such that:

n=c 2 te_i1: 2 +...+2%+e- 2+

Solution: Base cases 1 = 2°. Also 2 = 21,
The induction hypothesis is the assumption that we know how to express any j, 1 < j < k using powers of 2.
Now let us consider £ + 1. We need to show how to express this as powers of 2.
First thing to note is that k£ + 1 is either odd or even.

Case 1

If & + 1 is odd, then first using the induction hypothesis to express k in a binary expression.
Letus say k = ;2P + ...+ 12! + ¢,
k is even. k is even would mean k is divisible by 2.
That would mean that the very last bit ¢y must be O (else it would leave a remainder of 1 when divided by 2).
That means that expressing k + 1 iseasy. k +1 = ¢,2P + ... + 2! +1
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Answer 5 (cont.)

Case 2

If K+ 1iseven, then k + 1 = 2t forsome t € Z.

But this would mean that ¢t < k

Therefore ¢ actually is something that we can apply the induction hypothesis on.

t =dy2¥ +dy—12Y"1 + ...+ d12! + dp.

To get k + 1 we can get just multiply this whole expression by 2.

k+1=dy2¥t +d,_12Y + ... + dp2!

This shows how to express k + 1 in binary in both the even and odd cases. That means that we have shown how to
express k + 1 in binary in all cases.

Combine this with the two base cases and we have a complete proof by induction.
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See you after Thanksgiving!




