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Proof by Contradiction

Proposition 20.2 The Boolean formulas a — b and (@ A —b) — FALSE are logically equivalent.

Proof. To see that these two are logically equivalent, we build a truth table.

a b a—b a A —b (a A —b) — FALSE
T T T F T
T F F T F
F T T F T
F F T F T

Therefore a — b = (a A —b) — FALSE.
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Proof by Contradiction

P Q P P=>Q ["PVQ|~(P=Q) PA-Q
T T F T T F F
F T T T T F F
T F F F F T T
F F T T T F F
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Proof by contradiction

Proof Template 12 Proof by contradiction

To prove “If A, then B™:
We assume the conditions in A.
Suppose, for the sake of contradiction, not B.
Argue until we reach a contradiction.
= <= B

(The symbol = <= is an abbreviation for the following: Thus we have reached a con-
tradiction. Therefore the supposition (not B) must be false. Hence B is true.)
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Proof by Contradiction

Proposition 20.3  No integer is both even and odd.

Re-expressed in if-then form, Proposition 20.3 reads, “If x is an integer, then x is not
both even and odd.”
Let’s set up a proof by contradiction.

Let x be an integer.
Suppose, for the sake of contradiction, that x is both even and odd.

That is impossible. Thus we have reached a contradiction, so our supposition (that x
is both even and odd) is false. Therefore x is not both even and odd, and the proposition
is proved. =
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Proof by Contradiction

Let x be an integer.

Suppose, for the sake of contradiction, that x is both even and odd.
Since x is even, we know 2|x; that is, there is an integer a such that x = 2a.
Since x is odd, we know that there is an integer b such that x = 2b + 1.

=> <= Therefore x is not both even and odd, and the proposition is proved. m

Let x be an integer.
Suppose, for the sake of contradiction, that x is both even and odd.
Since x is even, we know 2|x; that is, there is an integer a such that x = 2a.
Since x is odd, we know that there is an integer b such that x = 2b + 1.
Therefore 2a = 2b + 1. Dividing both sides by 2 givesa = b + % soa—b = ;.
Note that a — b is an integer (since a and b are integers) but % is not an integer. =<
Therefore x is not both even and odd, and the proposition is proved. m

N [ =
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Contrapositive

Suppose x € Z.If 7x + 9 is even, then x is odd

Proof by contrapositive: (recall if a then b becomes if not b
then not A

Suppose x is NOT odd.
Suppose x is not odd. Thus we can write it as some x = 2a
Then 7x +9=7(2a) +9=14a + 9 =2(7a+4) + |

Consequently 7x + 9 is not even
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How to Negate an Implication

Say we want to negate:P = Q

We want to make it: 7(P = Q)

Step |: Replace Implication Sign
Rewrite P= Qas:=P V Q
With the negation:

~(P = Q) becomes ~(-P V Q)

& Penn Engineering

Step 2: Use DeMorgan’s Law
Rewrite =P V Q as: (P A =Q)
With the negation:

=(-P V Q) becomes =(=(P A
~Q))

Step 3: Cancel out Extra Negations

=(=(P A =Q)) becomes P A =Q



Question ?

Prove by contradiction that
if 4 divides an integer n,then n + 2 is not divisible by 4
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Answer |

We will prove this by contradiction.

1. Assume, to the contrary, that if n is divisible by 4, then n + 2 is divisible by 4.
2. Since 4 divides n, then n = 4k for some integer k.

3. Since n + 2 is divisible by 4, then n + 2 = 4p for some integer p.

4. Substituting n =4k into n + 2 = 4p:

4k +2 =4p
2=4(p-k)
V2=p-k

5. Since p, k are integers, then p - k is an integer. However, /2 is not an integer, which leads to
a contradiction.

6. Therefore, we conclude that the original statement is true: if 4 divides an integer n, then n
+ 2 is not divisible by 4.
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Question |

Exercise 1
What is the truth value of the following?
(Assume all z,y, z € Z).

A. VaVy3dz,zy+2>0
B. Ved2Vy,zy+2 >0
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Answer |

Exercise 1
What is the truth value of the following?
(Assume all z,y, z € Z).

A. VzVy3dz,zy+2>0

Solution: True. We can always find a z > —xy that satisfies this condition for all z and all y. No matter what x
and y are, we can pick a greater value for z.

[ )
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Answer | (cont.)

Exercise 1
What is the truth value of the following?
(Assume all z, y, z € Z).

A. VzVy3dz,zy+2>0

Solution: True. We can always find a z > —xy that satisfies this condition for all z and all y. No matter what x
and y are, we can pick a greater value for z.

B. Vz3dzVy,zy+ 2> 0

Solution: False. We can always find a counter-example y to invalidate the condition. Since z is “picked” before y,
we can always define y < == to find a counter-example.

[ )
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Question 2

Exercise 2
Prove that the product of two consecutive integers will always be even.

Hint: cases by even and odd numbers
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Answer 2

Exercise 2
Prove that the product of two consecutive integers will always be even.

Solution:
x and z + 1.
Two cases: x i1s odd, or x is even.

Casel: 2 =2a+1,a € Z
z(x+1)

(2a 4+ 1)(2a + 2)
2(2a+1)(a+1)
2b,b € Z

Even

FEEL
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Answer 2 (cont.)

Exercise 2
Prove that the product of two consecutive integers will always be even.

Solution:
x and x + 1.
Two cases: x i1s odd, or X is even.

Case2: x =2a,a € Z
= z(x+1)
= (2a)(2a+1)
= 2(a)(2a+1)
— 2b,beZ

= Even

In both cases, the product of two consecutive integers will always be even.

V:‘ Penn Engineering



Question 3

Exercise 3
Show for any sets Aand C, C' = (C'—A)U(CNA). . Recall that to show aset X = Y you havetoshow X C YandY C X.

Set Identities
Name Identities
Idempotent laws AUA=A ANA=A
Associative laws (AUB)UC =AU (BUCQC) (ANB)NC=ANn(BNC)
Commutative laws AUuB=BUA AnNB=BnNnA

Distributive laws AU(BNC)=(AUB)N(AUC) ANn(BUC)=(ANB)U(ANC)

Identity laws AUuf=A ANU=A
Domination laws ANO=0 AuU=U
Double complement law Z it
ANA=0 AUA=U
Complement laws . _
U=20 0=U
De Morgan's laws AUB=ANB ANB=AUB

Absorption laws AU(ANB)=A AN(AuB)=A4



Answer 3

Exercise 3
Show for any sets Aand C, C' = (C'—A)U(CNA). . Recall that to show aset X = Y you havetoshow X C YandY C X.

Solution: To prove: C' = (C' — A)U (C N A)
We will have to prove both: C C (C' — A) U (C' N A)
And: (C—-A)U(CNA)CC

Forwards: C C (C — A) U (C N A) Backwards: (C' — A) U (CNA)CC
CC(CNnAU(CNA) (CnAU(CNACC
CCCN(AUA) cCn(AUA4)cC

cccnu cconvu

ccce ccce
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Detour: Rational Numbers

. Any rational number, x, can be expressed as a
fraction:

2 where p and q are integers, and q is not 0

. e.2.0.25 can be expressed as |/4

. A common strategy when doing a proof by
contradiction involving rational numbers is to show
that assuming some condition is true will lead to a

situation where q is 0, or a number that has to be
irrational
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Question 4

Exercise 4
Prove that the sum of two rational numbers is rational. Use the definition that a number is rational iff it can be expressed

in the form £ where p and g are integers, and ¢ # 0 (we aren’t worrying about relative primeness/if the fraction is fully
(

simplified here, they’re equivalent definitions).

Penn Engineering



Answer 4

Exercise 4
Prove that the sum of two rational numbers is rational. Use the definition that a number is rational iff it can be expressed
in the form 2 where p and q are integers, and ¢ # 0 (we aren’t worrying about relative primeness/if the fraction is fully

simplified here, they’re equivalent definitions).

Solution: Assume j and k are rational numbers. Since they are both rational numbers, they can be expressed as: j = %
and k = Z—i where a, b, ¢, d are all integers and b and d cannot be 0 by definition of a rational number. Then

o e G ad be  ad+be

I dT W T T bd
The multiplication of two integers is still an integer and the addition of two integers is still an integer. Hence, the
numerator is an integer. Similarly, the denominator is also an integer, and both b and d cannot be 0 so the denominator is
a non-zero integer (see the last exercise :D). Since both the numerator and denominator are integers and the denominator
is non-zero, we have proven that sum of two rational is a rational number.

[ )
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Question 5

Exercise 5

Prove by contradiction that there are no rational solutions to the equation 22 + z + 1 = (. Remember that a rational number

is a number of the form B where p and ¢ are integers, ¢ # 0, and that the common factors have been eliminated. Hint: break

it into cases of p being even/odd and ¢ being even/odd.

Odd + Odd | = Even
Even + Even = Even
Odd + Even |= Odd
Odd x Odd | = Odd
Even * Even = Even
Odd * Even = Even

[ )
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Answer 5

Exercise 5

Prove by contradiction that there are no rational solutions to the equation 2® + 2 + 1 = (. Remember that a rational number

is a number of the form B where p and ¢ are integers, ¢ # 0, and that the common factors have been eliminated. Hint: break

it into cases of p being even/odd and ¢ being even/odd.

Solution: Assume for the sake of contradiction that z is a rational number such that 23 + 2 + 1 = 0.

By definition, dp, g € Z, q # 0, such that z = E’ and p and g don’t share any common factors (are relatively prime, i.e.
q

the fraction is fully simplified). Then

2 +z+1=0
3

e +Pii1=0
T q

p3 +pq2 4. q3 .

P
p3 + pq2 + (13 =0

0

Now we will case on the parities (oddness/evenness) of p and q.

[ )
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Answer 5 (cont.)

Case 1: pis odd, ¢ is odd

p® + pg? + ¢® = odd + odd + odd product of odds is odd
= even + odd sum of odd and odd is even
= odd sum of odd and even is odd

The result is odd, but this is a contradiction since it must equal 0, which is an even integer.

Case 2: pis odd, g is even

P+ pg® + ¢ = odd + even + even prod. of odds is odd/prod. of an even is even
= odd + even sum of evens is even
= odd sum of odd and even is odd

The result is odd, but this is a contradiction since it must equal 0, which is an even integer.

[ )
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Answer 5 (cont.)

Case 3: piseven, ¢ is odd

P° + pg® + ¢ = even + even + odd prod. of odds is odd/prod. of an even is even
= odd + even sum of evens is even
= odd sum of odd and even is odd

The result is odd, but this is a contradiction since it must equal 0, which is an even integer.

Case 4: pis even, g is even
If p and g are even, then by definition, they share a common factor of 2, which contradicts the assumption we made at
the beginning that z is rational.

Since all cases of p and g result in a contradiction, we must have that there are no rational solutions to the equation
3
+zxz+1=0.

[ )
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Detour: Modulo

® "Modulo” is the remainder in a division by something
e n = m [mod p] is the same thing as saying there is a k such that n = kp + m
e For example: Il = 3 [mod 4] can be thought of as 7 = (2)(4) + 3
® When we have a division by p, for instance here, p = 3, then we consider a case for each
of the possible remainders:
© n=0[mod 3]
o n =1 [mod 3]
0 n=2[mod3]

® The possible remainders will span from 0 to p - |

e We couldn’t have n = 3 [mod 3], because 3 divides 3 with no remainder, so that’s
the same case as n = 0 [mod 3]; we can never have a remainder of 3 when dividing by 3
since we could just increment k to deal with that

e This can be a handy tool to use in many cases: for example to denote that a number, x,
is even we can say x = 0 [mod 2], i.e. that x can be divided by 2 with no remainder

& Penn Engineering



Question 6

Exercise 6
Prove that for any positive integer n, if n modulo 4 (n%4 if you were writing Java) is 2 or 3 then n is not a perfect square.
You are allowed to assume that a number when divided by 4 is either going to leave a remainder of 0, 1, 2, or 3.

Use Contradiction
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Answer 6

Exercise 6
Prove that for any positive integer n, if n modulo 4 (n%4 if you were writing Java) is 2 or 3 then n is not a perfect square.
You are allowed to assume that a number when divided by 4 is either going to leave a remainder of 0, 1, 2, or 3.

Solution: Suppose for the sake of contradiction that there exists a positive integer n such that n = 2 (mod 4) orn = 3
(mod 4), and n = m? for some integer m (take note of the notation!). Consider the following cases:
Case 1: m =0 (mod 4)
m=0 (modd) = m=4k, keZ

= m? = 16k>

=5 ‘m? = 4(4k%)

= m?’=0 (mod 4)

= n=0 (mod4)

[ )
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Answer 6 (cont.)

Case2: m =1 (mod 4)

m=1 (mod4) = m=4k+1, kecZ
m? = 16k* + 8k + 1
m? = 4(4k? + 2k) + 1
m?=1 (mod 4)
n=1 (mod 4)

I

Case 3: m = 2 (mod 4)

m =2 (mod 4) m=4k+2, k€ Z
m? = 16k” + 16k + 4
m? = 4(4k? + 4k + 1)
m?>=0 (mod 4)

n=0 (mod 4)

Ll

[ )
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Answer 6 (cont.)

Case4: m =3 (mod 4)

m=3 (modd) = m=4k+3, keZ

= m? =16k 424k + 9

= m?=4(4k> +6k+2) +1
— m?=1 (mod 4)

n=1 (mod 4)

!

Thus, we see that in any case,n = 0 (mod 4) orn = 1 (mod 4). However, this contradicts the assumption that n = 2
(mod 4) orn = 3 (mod 4). Therefore, since we reached a contradiction, there are no n such that if n = 2 (mod 4) or
n =3 (mod 4), then n is a perfect square.

[ )
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Question 6

Exercise 7
Let A and B be sets. Prove (AN B) = (ifand only if (A x B)N (B x A) = (.
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Answer 6

Exercise 7
Let A and B be sets. Prove (AN B) = (@ ifand only if (A x B) N (B x A) = 0.

Solution: We need to prove both directions of the implication.
To prove (ANB) =0 = (A x B)N (B x A) = (), we will prove the statement by proving the contrapositive. That
is, we will prove thatif (A x B) N (B x A) # (), then (AN B) # 0.

Assume that for sets A and B, (A x B) N (B x A) # (. Then there is some tuple (x,22) such that (z1,z2) €
(A x B)N (B x A). By the definition of set intersection, (21, z2) € A x B and (z1,x2) € B x A. By the definition of
Cartesian product, z1 € A and x2 € B, and 21 € B and x3 € A. Therefore, z; € AN B, and 22 € AN B. Therefore
ANB # 0.

To prove (A x B)N (B x A) =0 = (AN B) = 0, we will once again prove this flipped statement by prov-
ing the contrapositive. That is, we will prove that if (AN B) # (), then (A x B) N (B x A) # 0.

Assume that for sets A and B, AN B # (). Then there exists some x such that z € A N B. Then by the definition of
set intersection, z € A and € B. Then by the definition of Cartesian product, (z,z) € A x Band (z,z) € B x A.
Therefore, we must have that: (z,z) € (A x B)N (B x A).

Therefore: (A x B)N (B x A) # 0.

[ )
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See you next week!




