Proof Selection

- ★ Direct Proof: to prove A ⇒ B when it is straightforward to go from A to B, and A and B are simple to define.
- * Proof by contrapositive: to prove $\underline{A} \Rightarrow \underline{B}$, where either (i) \underline{A} is "complicated," or \underline{B} is "complicated" but not \underline{B} is "simple".
- * Prove by Contradiction: "is used to prove "existence" ("does not exist" OR "uniqueness" ("is not unique").
- * Proof by Induction: any statement that can be indexed by integers, and is true for all integers after a certain point.
- Ex.1. Prove that $2\pi + 3$ is irrational. You can assume π is irrational. Suppose $2\pi + 3$ is rational number. $2\pi + 3 = \frac{a}{b}$ for some $\underline{a} \cdot \underline{b} \in 72$. $\underline{b} \neq 0$ Then $2\pi = \frac{a}{b} - 3 = \frac{a - 3b}{b}$ $\pi = -\frac{\frac{a}{b} - 3}{2} = -\frac{a - 3b}{b} \cdot \frac{1}{2} = -\frac{a - 3b}{2b}$ Since a - 3b is an integer, 2b is integer. Hence $\frac{a - 3b}{2b}$ is a rational number. $\therefore \underline{\pi} \in \mathbb{Q}$.
 - We have a contradiction.

Ex.2. A B
Prove that for all integers x,y. if
$$(\underline{x^{2}+1})(\underline{y}+1)$$
 is even, then x is odd or
y is odd. $\neg B \rightarrow \neg A$
Suppose that neither x or y is odd, which is both x and y is even
 $x^{2} = x \cdot x$ is even since a product of evens is even.
 $x^{2}+1$ is odd since even + odd = odd.
y+1 is odd since even + odd = odd.
(x^{2}+1)(y+1) is odd since product of odds is odd.
Thus $(x^{2}+1)(y+1)$ is not even.

Ex. 3. If dia and dib, then di(a-2b)
Suppose
$$a = dn$$
, $n \in \mathbb{Z}$,
 $b = dm$, $m \in \mathbb{Z}$,
 $a-2b = dn - 2cdm$)
 $= dn - d(2m)$
 $= d(n - 2m)$
 $n \in \mathbb{Z}$, $2m \in \mathbb{Z}$, $= n - 2m \in \mathbb{Z}$.
 $d|a-2b$ is true. \Box

$$\frac{4}{2} : c) \sum_{\substack{i=1 \\ i=1 \\ k+1 \\ i=1 \\ i=1 \\ k+1 \\ i=1 \\ i=1$$

(c) Contradiction Assume J2 + rational number and regult is rational. J $\sqrt{2} + \frac{7}{9} = -\frac{m}{n}$ $\sqrt{2} = \frac{m}{\Lambda}$ mq-np 2 honoitan 21 But Ja is not rational !! CONTRADICTION