c
$$1T 5920 - Induction$$

review of weak induction
intro to storing induction
examples/practice. $P(R) \Rightarrow P(R+1)$
Q By induction prove that $S^{2}+3$ is divisible by
4 $\forall n \in \mathbb{Z}^{+}$ $n = \{1, 2, 3, ..., \}$
Proof by induction
 $\bigcirc Base case - Show holds for smalles) val
 $\bigcirc Base case - Show holds for smalles) val
 $\bigcirc Base case - Show holds for malles) val
 $\bigcirc Base case - Show holds for malles) val
 $\bigcirc Base case - Show holds for n = R (asturne)$
 (IH)
 $\bigcirc Induction drep - Using IH show shotement
 $\mod S^{2}+3 = \frac{8}{2}$. 8 is $2 \approx 4$. Clearly
 $S^{2}+3 = \frac{8}{2}$. 8 is $2 \approx 4$. Clearly
 $S^{2}+3 = \frac{8}{2}$. 8 is $2 \approx 4$. Clearly
 $for some k \in \mathbb{Z}^{+}$
 \boxed{TH} assume $5^{K}+3$ is divisible by 4 done
 \boxed{Fr} some $k \in \mathbb{Z}^{+}$
 \boxed{Goal} : Somehow bring in \boxed{IH}
 $5^{K+1}+3 = \frac{5^{K}\cdot5+3}{5^{K}+3} + \frac{3}{-15}$ $\textcircled{3}$
 $= \frac{5(5^{K}+3)}{14} + \frac{3}{-15}$ $\textcircled{3}$
 $\dim S^{K}+3$ is divisible
 $\frac{4}{3}$ $\frac{4}{3}$ $\frac{4}{3}$
 $\frac{1}{3}$ $\frac{5^{K}+3}{3} + \frac{3}{3}$ $\frac{1}{3}$
 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$
 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$
 $\frac{1}{3}$ $\frac{1}{3}$$$$$$

which is what we needed to show dance by induction. STRONG INDUCTION () Base cases: Show statement holds for some small values. 2) Ind hypothesis (IH): assume statement holds for all values from the base case tupio and including k. P(a) ~ P(a+1) ~... ~ P(k) assumed to Using IH show P(kt1) i.e. statement 3) Ind step holds for k+1. Example 1 Prove that all positive integers > 2 are either prime or can be expressed as a product of primes. prime - only factors are I and itself. define Is 1 prime ?? $\bigcap_{i=1}^{n}$ ab all mumbers > 2 are either a divites b prime or composite I not prime b=ak. has more than 2 factors 3 some factor other 1 and itself. $\exists a \ 1 \leq a \leq n$, $a \in \mathbb{Z}^{\dagger}$ such that a n.

Prove that all positive integers > 2
are either prime or can be expressed
as a product of primes.
Base case 1 = 9 2 2 is prime. done.
IH Assume result holds
$$\forall m \in \mathbb{Z}^+$$
 st
2 $\leq m \leq k$
Induction stop to show result for k+1
Ret1 case 1: if ket prime done
(ase 1: if ket) is composite.
I a st a k+1 & 1 ... 2 \$\leq a \leq k\$
a is within range where JH is applicable.
applying IH to a gives us
a is either a prime or a product of
prime.
A OR P1
Since a k+1 ... A prime done of a product of
prime of 1 **prime of 1**

By It a is prime (product of primes
b is prime (product of primes
kt) = ab s product of primes
which shows require

$$100 = 25 \times 6$$

 $5a5 2 \times 2$
 $qq = 23 \times 3$
 $11 \times 3 \times 3$
 $5c2$: (nh fibonacci $\leq 2^{\circ}$)
fib(1) = 1 fib(n-2) Recursion
 $fib(1) = 1$ fib(n-2) Recursion
 $6aye case fib(1) = 1 \quad g' = 2$ Result holds
 $clearly 1 \leq 2$.
 $also fib(2) = 1 \quad g^2 = 4$ for in term
 $clearly 1 \leq 4$ fib(k)
 $fib(1) \leq 4$ fib(k)
 $fib(1) \leq 4$ fib(k)
 $fib(k) \leq 4$ fib(k-1)
 $fib(k) + fib(k-1)$
 $fib(k-1) = 1$
 $fib(k) + fib(k-1)$
 $fib(k) + fib(k-1)$
 $fib(k) = 1$
 $fib(k) = 1$
 $fib(k) + fib(k-1)$
 $fib(k) = 1$
 $fib($

BC $\frac{1}{1}$ n-2 Can't be porpoven by JH $fib(k+1) \leq 2^{k+1}$ fib (k) + fib (h-1) by IN $fib(k) \leq 2^k \\ \& fib(k-1) \leq 2^{k-1}$ we know $2^{k-1} < 2^k$ $f_{b}(k+1) \leq a^{k-1}$ $\leq 2^{k} + 2^{k}$ $\leq 2^{k} + 2^{k}$ $\geq k + 1$ done Assume we have currency system

Ex 3 Assume we have during system where 3 cent win, 4 cent win and nothing else. Infinite supply Q. For what values of n cents can we generate exact charge?? $G = 3 \times 2$ $G = 3 \times 3$ $G = 3 \times 3$ $G = 3 \times 3$