Induction

Recognizing a pattern
ex.
$$1+3=4=2^{n}$$

 $1+3+s=9=3^{n}$
 $1+3+s+7=16=4$
 $f \uparrow f \uparrow f$
odd Numbers
(Sum of odd Numbers) = N²
 $P(N): \sum_{i=1}^{N} (2i-i) = N^{n}$
Idea behind Induction
Induction is used to prove a theorem holds for all integers
 $(N>0)$ if we are able to do the following:
* State the Proposition os depending on an integer parameter
 $P(N)$
* Shav the base case : $P(k)$ is verified for $k=1$ (or
 k equals a small number), (the base case must exist but
not always our 1)
* Shav that if theorem holds for k then it must also
 $k+1$
 $k = k+1$, $k-1 = k$ the same thing

=) Assume theorem holds for
$$k$$
, => induction hypothesis
=) Prove theorem holds for $k+1$ by assumption => induction
step.
When we have all three elements, we can prove that
 $P(N)$ holds for all $N > k$ for a certain k .

Intution

ex. let
$$P(k)$$
 be the property
 $P(k) : \sum_{i=1}^{k} 2i - i = k^{2}$

Base (ase: we have to identify which value of k makes sense to begin with. (usually k=0/k=1) Since it needs to be proved on all odd numbers, we choose k=1

For
$$k=1$$
:
LHS: $\sum_{r=1}^{k} 2i - r = 2 \times 1 - r = 1$
RHS: $r^{2} = r$
 \therefore LHS = RHS, \Rightarrow P(1) is the

Inductive step: We assume PCK, is true, we want to show P(K+1) is true P(k) is true $\Rightarrow \sum_{i=1}^{k} 2i - 1 = k^{2}$ $P(k+1): \sum_{i=1}^{k+1} 2i - 1 = (k+1)^{2}$ = L' + 2K+2-1 $= k^{2} + 2k + 1$ $= (k+1)^{2}$ =) P(K+1) is true. Therefore, we show that P(k) => P(k+1)

Since base case + Inductive Step then we show

Penn is true for all
$$n \ge 1$$
, $\sum_{i=1}^{n} 2i - i = n^{2}$ is true
Example with base case different than $k=0$ or $k=1$
Question: Is N! bigger than 2^{n} ?
Exploration @ Computing for Small values of N
N N! 2^{n}
i i i 2×4
3 6×8
4 24×16
5 120×32
@ Reaconing abstractly N terms for large value
N! $i \ge 3 \cdot 4 \cdot 5 \cdot \cdots$
N terms
Thinks I've uncovered:
- N! and 2^{n} are products of N terms
- all but the first thee terms of N! are larger than 2^{n}
- Therefore, we expect $N! > 2^{n}$, $N \ge 4$

We want to prove
$$P(h): N! > 2^{N}$$
 is true for all $N > 4$.
Base Case: (et $N = 4$, then $LHS: N! = 24$, $RHS: 2^{N} = 16$
Since $24 > 16$, we say $P(L)$ is true
Inductive Step: We assume that $P(k)$ is true which means
 $k! > 2^{K}$
We want to know whether twis pattern continues with
 $(k+1)!$ and 2^{k+1}
 LHS
 $k! > 2^{K}$ from inductive hyportuesis
 $(k+1)! = \frac{k!}{2} \times (k+1)$
Since $k! > 2^{K}$ from inductive hyportuesis
 $(k+1)! > 2^{K} \times (k+1)$
 $k+1 > 2$
 $(k+1)! > 2^{K} \times (k+1)$
 $k+1 > 2$
 $(k+1)! > 2^{K} \times (k+1)$
 $k+1 > 2$
 $(k+1)! > 2^{K} \times 2$
 $(k+1)! > 2^{K} \times 2$
 $(k+1)! > 2^{K+1}$
therefore $P(k) > P(k+1)$
By base case and inductive step, we proved
for all $N > 4$, $N! > 2^{N}$
Receipt to find a base case:
 (1) try l ,
 (2) if that doesn't work, try 2
 (3) if that doesn't work, investigate other optimes

Factorial Algorithm

Factorial is a function defined mathematically $\underline{n!} = \begin{cases} 1 & \text{if } n=0 \\ nx(n-1)! & \text{if } n>0 \end{cases}$ In Java: int FACT (int n) f if (h== 0) Return 1; else Return <u>n</u>* FACT (n-1); ſ Pcn: FACT(n)=n! Base Case: The base case is n=0 by definition of factorial, 0! = 1' (RHS) by definition of FACT, FACT (0), the function returns I because n==0 is true. This shows that FACT (0) = 0!, base case is true, Pw, is true.

Inductive Step: Let's assume on Property is true for n, P(n) is true. we want to show P(n+1) is true. Inductive Hypothesis: FAcT(n) = n!. By the algorithm, when you call FAcT(n+1), it will compute $(n+1) + FAcT((n+1)-1) \Rightarrow (n+1) * FACT(n)$ By the inductive hypothesis, we know that FACT(n) = n!We can substitute: $(h+1) \times FACT(n) = (h+1) \times n!$ = (n+1)!

So, we show that $P(n) \rightarrow P(n+1)$ and combined with the base Case. P(n) folds for all $n \cdot n \ge 0$.

Sum of first N integers:
$$\sum_{i=1}^{r} = \frac{h(h+i)}{2}$$

$$P(n): \sum_{i=1}^{n} i = \frac{h(n+i)}{2}$$

Base Case: n=1, LHS: $\sum_{i=1}^{l} i = 1$, RHS: $\frac{1 \times (1+i)}{2} = \frac{1 \times 2}{2} = 1$
LHS = RHS, \Rightarrow P(1) is true

Inductive Step: Assume P(k) is true, we want to show P(k+1) is true. Show: $\sum_{i=1}^{k} \frac{k(k+1)}{2} = \frac{k(k+1)}{2} = \frac{k(k+1)}{2} = \frac{(k+1)(k+2)}{2}$ $\sum_{i=1}^{k+1} \frac{k}{2} = \sum_{i=1}^{k} \frac{k}{2} + \frac{k}{2$ Therefore. $P(F) \Rightarrow P(F+1)$. Based on base case and Inductive step, we proved $\sum_{i=1}^{n} i = \frac{h(n+1)}{2} is true.$