Ex For every integer
$$X$$
, if X is odd, then \overline{X} is even
 $\forall X \in \mathbb{Z}$. $Odd(X) \Rightarrow Even(Xti)$

(VXES)PCX): let x be any element of S, prove PCX) is true predicates

Let x be any integer, Suppose x is odd,
there exists an integer y such that
$$x=2y+1$$

 $X+1=2y+1+1=2y+2=2(y+1)$, Assume $k=y+1$,
 $X+1=2k$, $k\in\mathbb{Z}$,
X is even.
QED

Contrapositive. Converse and Inverse

Contrapositive:
$$\neg q \Rightarrow \neg P$$
, $P \Rightarrow q$
Converse : $q \Rightarrow P$

Inverse : JP-> J

Indired Proof
Proof by contradiction
Proof by contradiction
Proof by contradiction
Contradiction:
Ex: Today is a rainy day
$$\Rightarrow P$$

Assume it is not a rainy day, then we found
the ground is net, Contradiction! $\Rightarrow \neg P$ is false.
Today is a rainy day.
 $\Rightarrow P$ is true
 $P \Rightarrow q$, $\neg (P \Rightarrow q) \Rightarrow$ false
 $\neg (\neg P \lor q) \Rightarrow$ false
 $P \land q \Rightarrow false$

Pigeonhole Principle
Statement. If [N Pigeons Tare placed into M pigeonholes
with
$$N > M$$
], then [at least one pigeonhole must contain
more than one Pigeon] yB
 $A = B$, [$A \cap \neg B = false$]

$$\Im$$
 Build up to contradiction:
But we have N Pigeons and N > M, this contradicts our
Original assumption that every pigeonhole contains at most one
Pigeon.

Proof by Contropositive
$$P = Q$$
, $\neg Q = 7P$
If [No pigeonhole contains more than one pigeon], then $N \leq N_{1}$
 $\neg \tilde{B}$