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Overview for Today

Logistics (5 minutes)
Review (45 minutes)
Question | (3 minutes)
* Question 2 (4 minutes)
* Question 3 (4 minutes)
* Question 4 (3 minutes)
Question 5 (5 minutes)
Homework
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Logistics

* TA Office Hours starting next week
* Homework | released

— Due Monday, September |6 at | 1:59 PM, but we will accept late
submissions without penalty

— Homework 2 will be released next Monday (due Monday, September
23 at | 1:59 PM)

e Math Resources
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Review

* (Generalized) Cartesian product
* Ai notation
* Partitioning sets

* Practice distinguishing element/subset of A,B and A x B
— A and B contain elements and A X B contains pairs [of elements]
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Review

Generalized Cartesian products

The Cartesian product of Al,A2,...,An, denoted Al XA2 x..XAn, is defined to be:

Al xA2 x . xAn={(al,a2,..., an) :ai € Ai for all integers i such that | <i < n}

What is the cardinality of the cross product of a set with
cardinality m and a set with cardinality n ?
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Review

Partition

A set A can be partitioned into subsets A if

AZOAZ and

1=1
A; N A; =0 for every i # j.
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Review

A={1,2} B={5,1)
What is A x B?
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Review

A={l,2} B=/{51}
What is A x B?

Is {1,5} C A x B?
Is {1,5} € A x B?

Is {(1,5)} C A x B?
Is {(1,5)} € A x B?
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Roadmap

Injections
(one-to-one)

Cartesian e N

Sets—» —Relations—Functions Bijections

Products
NS

Surjections
(onto)
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Review

* Relations are subsets of Cartesian products

— Reflexive: if for all elements a in set A, aRa.

— Symmetric: if aRb means that bRa.

— Transitive: if whenever aRb and bRc, then aRc.

— Equivalent: iff (if and only if) reflexive, symmetric, and
transitive.

— Anti-symmetric:
I. if aRb and bRa, then a=b.
ii. if aRb with a#b, then bRa must not hold.

* Examples
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Review

Example: aRb iff User a follows User b on X (Twitter)

s this reflexive! (Do we need to assume anything?) Y?

s this symmetric? N
s this transitive?

N
Is this an equivalence relation? N
s this anti-symmetric? N
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Review

Example: aRb iff a is a subset of b

Is this reflexive?

Is this symmetric!?
s this transitive?

Is this an equivalence relation?
s this anti-symmetric?
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Review

Example: aRb iff Person a lives within 2 miles of Person b

s this reflexive? Y
Is this symmetric!? Y
s this transitive? N
Is this an equivalence relation!? N
s this anti-symmetric? N
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Review

s it possible for a relation to be both symmetric and
anti-symmetric?

a=>b
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Review

If a,b € R, determine whether these relations below
are

reflexive, symmetric, transitive, and anti-symmetric
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Solution

Relation Reflexive Symmetric Transitive Anti-symmetric
a<b Yes No Yes Yes
a#b No Yes No No
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Solution

3. Relation: a? = b? (Equality of Squares)

» Reflexive:

2

Yes, the relation is reflexive because for all real numbers a, a*> = a? holds. This satisfies the

definition of reflexivity.

*  Symmetric:
Yes, the relation is symmetric. If a> = b2, then b = a2, which holds true by the equality of
the squares.

» Transitive:
Yes, the relation is transitive. Transitivity requires that if a> = b* and b*> = ¢?, then a® = c?.
This holds true because if the squares of a, b, and ¢ are equal, then a? = ¢2.

* Anti-symmetric:
No, the relation is not anti-symmetric. For anti-symmetry, if a> = b® and b®> = a?, then it

should imply that @ = b. However, this is not the case here because a? = b* can be true even
when a # b. For example, @ = 1 and b = —1 have equal squares but are different values.
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Review

Let A={a,b,c,d}. Consider the Cartesian product AXA
which includes all possible ordered pairs from elements
of A and form these relations below from the set AXA

EX: Reﬂ eX|Ve R1 = {(a,a), (b,b),(c,c), (d,d)} U (any other pairs from A x A)

® Transitive
® Anti-symmetric
e Reflexive, symmetric, transitive, and anti-symmetric
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Solution

Transitive:

R3 = {(aa a)3 (b3 b)? (C, C)’ (d’ d)a (a’? b)a (ba C)a (a: C)a (aa d)? (ba d)a (C, d)}

Anti-symmetric
R4 = {(a,a), (b,b), (¢, ¢), (d,d), (a,b), (b, c), (c,d)}
Reflexive, symmetric, transitive, and anti-symmetric

{(a,a),(b,b),(c,c), (d,d)}
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Question |

Assume A and B are sets.
Under what conditionsis A x B= B x A?

In arithmetic you are told that if a — b = 0 then a = b.

In set theory, if someone tells you A — B = () what will that mean?
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Answer |

Either A = B, or at least one set is empty

(Since (a, b) are ordered pairs, the only way the pairs we build are the
same from AxB and BxA is if: EITHER the Cartesian products are the
same (since A is identical to B) or the Cartesian product is empty (if one

of A or B is empty))

A C B (B contains all elements of A)
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Question 2

For each of the following, figure out if they are Reflexive, Symmetric,
Transitive, and Anti-symmetric. Assume that in each case, the relation that
we are talking about is named R and when we say aRb, we mean a is

related to b, that is (a,b) € R.

(a) On the set of real numbers, a is related to b iftf |a — b| < 5.
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Answer 2a

On the set of real numbers, a is related to b iff |[a — b| < 5. Solution:

Reflexive: Yes because every number subtracted from itself is 0, which is less than 5.
Symmetric: Yes because |a — b| = |b— a| so if |a — b| < 5, then |b —a| < 5
Transitive: No. (5,1) and (1, —1) are in the relation but (5, —1) is not
Anti-Symmetric: No. (3,2) and (2,3) are in the relation but 3 # 2
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Question 2

For each of the following, figure out if they are Reflexive, Symmetric,
Transitive, and Anti-symmetric. Assume that in each case, the relation that
we are talking about is named R and when we say aRb, we mean a is
related to b, that is (a,b) € R.

(b) Assume the set A is partitioned into subsets A, Ao, ..., A,. Define the relation
R between elements of A as aRb if a and b are elements of the same A;.

(c) Consider the set of human beings. Define two humans being related by R, as
h1Ryhs if and only if A is a biological child of hs.

(d) On N, aRb iff a divides b. divides in math is defined as follows
a divides b if there is some(at least one) integer solution to the equation ax = b
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Answer 2b

Assume the set A is parfitioned into subsets A1, As, ..., A,. Define the relation R
between elements of A as aRb if a and b are elements of the same A;. Solution:

Reflexive: Yes because each element of A; is in the same subset as itself.

Symmetric: Yes because if a is in the same subset A; as b, then b is in the same subset
A, as a.

Transitive: Yes because if a is in the same subset A; as b and b is in the same subset
A; as ¢, then a and c are also in the same subset A;.

Anti-Symmetric: No because if a can be in the same subset A; as b and b is in the
same subset A; as a, but a # b.
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Answer 2c

Consider the set of human beings. Define two humans being related by R, as hiRyh,
if and only if h; is a biological child of hA;. Solution:

Reflexive: No because a child cannot be their own parent.

Symmetric: No because child of a parent cannot be a parent of their parent.
Transitive: No because a child of a parent is not a child of their grandparent.
Anti-Symmetric: Yes because there isn’t a relationship where a child is also the parent
of their parent in this relation; therefore, this is vacuously true.

Penn Engineering



Answer 2d

On N, aRb iff a divides b. divides in math is defined as follows a divides b if there is
some(at least one) integer solution to the equation ax = b Solution:

Reflexive: Yes because a number divided by itself is 1.

Symmetric: No. (2,1) are in the relation but (1,2) are not.

Transitive: Yes. Let a = bxr and b = cy. By substitution, a = cxry. Therefore, by
definition, ¢ divides a. In other words, if a is divisible by b and b is divisible by ¢, then
a is divisible by c.

Anti-Symmetric: Yes because if a is divisible by b and b is divisible by a, this implies
that a = b

Note: The definition provided for division allows integers to be divided by O
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Question 3

True or False. A relation has to be either reflexive or symmetric or transitive or anti-
symmetric. In other words, every relation must satisfy at least one of the 4 properties.
If you think this True write out a justification (the concept of a formal proof will
be covered later). If you think this is False then write down a non-empty set and a
non-empty relation on that set that does not satisfy any of these 4 properties.

Forcing yourself to find/create/generate examples is one of the biggest
muscles this course tries to exercise!
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Answer 3

This statement is false. Consider set {a, b, c,d} and the relation{(a,b), (b, c), (¢, a), (a,c)}.
It is not reflexive (no element paired with itself), not symmetric ((a,b) but no (b,a), not
transitive ((b,c) and (c,a) but no (b,a), and not antisymmetric ((a,c) and (c,a) included but

a £&:a).

This is just one example and there are many other possibilities!

If you found a different one, it is even better! Don’t hesitate to ask TAs
to check your example to be sure.
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Question 4

Set builder notation review

Write the following sets in set builder notation:
o A ={0.25,05,1,2,4,8, 16,32}

n B={l,4,9,16,25,36}

o C={a,ceh,i,m,s,t}
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Question 4a

A ={0.25,0.5,1,2,4,8, 16,32} can be written as:

{X|x=2"n,n € Z,-2 <n <5}
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Question 4b

B=1{l,4,9,16,25,36} can be written as:
X|x € Z,x=n*>,l Sn<6}or
X|x=n?,x €% | <n<é6}
X|x € Z,x=n?,-6<n<6}or
x| x=n%,x€ N ,n € N,|<x<36}
Ix|x € N,Vx € N, | £x < 36}and so on and so on
We can bound x.We can bound n. But this may be
redundant.
All these are correct. But try be as accurate as possible
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Question 4c

C={a,ceh,i,m,s, t} can be written as:
{x | x € ‘mathematics’}
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Question 5

Prove it by the set identities (A UB)\N(AMNB)=(A\B) U (B\A)

Set Identities
Name Identities
Idempotent laws AUA=A ANA=A
Associative laws (AUB)UC=AU(BUCQ) (ANB)NC=ANn(BNC)
Commutative laws AuB=BUA ANB=BNA

definition of set difference, X \ Y = X N Y*, where Y“ is the complement of Y.

Distributive laws AU(BNC)=(AUB)N(AUC) ANn(BUC)=(ANB)U(ANC)

Identity laws AUup=A ANU=A4
Domination laws ANnO=0 AUU=U
Double complement law ‘71 o= i
A r| 1‘_4. = 0 A U A - U
Complement laws . ~
U=0 0=U
De Morgan's laws AUB=ANB ANB=AUB
Absorption laws AU(ANB)=A AN(AUB)=A
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Solution

LHS = (AUB)N(not(A U B)) [set
difference]

= (AUB)N(notA U notB) [De Morgan’s
law]

= (ANnotA) U (AMNnotB) U (BMNnotA) U (BMnotB)
[Distributive]

= (AMNnotB) U (BMNnotA)

= (A\B) U (BNA) = RHS
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See you next week!




