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rBeﬁnition of a relation

.
A relation between set A and set B is a subset of A x B. While for the purposes of pure o c v “ct ton s ( ‘

math there does not need to be any underlying property that governs the relation, for most P K.
practical purposes, you will find that there will be some property. S Pec‘ 1\ S h* OF

For example: Consider the set A = {1,2,3} and B = {4,5,6} and let us define the P
relation R to consist of tuples {(a,b)la € A,b € Bandb = a + 3}. Then the relation re\mt L) o“)
R=1{(1,4),(2,5).(3,6)}.

If (a,b) € R, then this is very often denoted as aRb. That notation is similar to the way

.
we write out relations like greater than, less than etc.
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o A relation R on set A is reflexive if for all elements a in set A, aRa. * [} n J cc* | O“
e A relation R from set A to set B is said to be symmetric if aRb means that bRa ° g
(implicitly we are assuming a € A, b € B). * s or e &*‘ o‘h
. L]
o A relation R on a set A is said to be transitive if whenever aRb and bRc then aRec. .* b t J c [ b‘ OV'

e A relation R is said to be an equivalence relation if and only if it is reflexive, symmetric
and transitive.

o A relation R is said to be anti-symmetric if aRb and bRa can only happen when a = b.

.
Alternatively we can define anti-symmetric as « # y should imply that either z is not A r e‘ Q‘\' OV’ be k.w & e\ﬂ r { "' A

related to y or y is not related to .
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1. Given the set A = {1,2,4}, define the relation R to be the < relation. That is aRRb
whenever a < b.

L]
Ts this reflexive? Yes. For a < a is always true. In particular, it is true for elements of - s \ S ) b y e ‘- 6 F A x B
-

A.
Is this symmetric? No. For instance 1 < 2 but it is not the case that 2 < 1. _‘
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In nddition, we have: ' o kot to be tenfuted
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